首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
分别以聚磷酸铵/季戊四醇(IFR)和可膨胀石墨(EG)为阻燃剂制备了阻燃天然橡胶(FRNR),对比研究了2种膨胀阻燃剂对天然橡胶阻燃性能、力学性能、热稳定性、燃烧性能的影响,并探究了造成阻燃性能差异的机理。结果表明,EG在天然橡胶中表现出更佳的阻燃效果,添加40%(质量分数)IFR的FRNR的LOI值为26.2,UL-94为Ⅴ-0级;而添加20%(质量分数)EG后,FRNR的LOI值已达到28.4,UL-94为Ⅴ-0级;IFR和EG的添加会严重恶化天然橡胶的力学性能;锥形量热的测试结果表明,EG的添加能更有效降低天然橡胶的热释放速率、总热释放量和烟气生成量,添加20%EG的FRNR的主要燃烧性能参数已优于含40%IFR的FRNR,添加40%EG的FRNR的主要燃烧性参数大幅度改善,其中热释放速率峰值由795 kW/m2降低至211 kW/m2,600 s时的总热释放量和总生烟量由116.3 MJ/m2和46.7 m2下降到35.6 MJ/m2和2.6 m2...  相似文献   

2.
通过极限氧指(LOI)、水平垂直燃烧(UL-94)、热重分析法(TGA)、锥形量热(CONE)等方法研究了新型膨胀型阻燃剂(SNP)对聚碳酸酯(PC)阻燃性能的影响。结果表明,阻燃PC的SNP最佳添加量为0.075%(质量分数),复合材料的LOI达到34.75%、UL-94 V-0级别,其点燃时间(TTI)减少40%、烟热释放量的峰值(PSPR)降低16.7%、火势增长指数(FIGRA)降低56%、峰值热释放速率时间(TPK-HRR)是原料PC的1.6倍,呈现出良好的阻燃性能和抑烟效果。SEM研究表明,SNP阻燃PC存在凝聚相和气相双重阻燃机理。  相似文献   

3.
利用锥形量热仪(CONE)在35kW/m2热辐照条件下,并结合极限氧指数(LOI)和UL-94垂直燃烧测试方法对聚丙烯(PP)/聚醋酸乙烯酯(PVAc)-有机蒙脱土(OMMT)纳米复合材料和加入无卤复配阻燃剂制备的PP/PVAc-OMMT/氢氧化镁(MH)/三氧化二锑(AO)纳米复合阻燃材料的热释放速率、烟释放及材料在燃烧时的质量损失行为进行了研究。结果表明,添加10%(质量分数)PVAc-OMMT可以提高PP材料的阻燃性能,燃烧时的热释放速率、质量损失率以及烟释放量减少,且PVAc-OMMT与无卤复配阻燃剂之间可产生阻燃协效作用,使纳米复合阻燃材料的阻燃性能、热稳定性和抑烟性进一步增强。  相似文献   

4.
以聚苯氧基磷酸-2-10-氢-9-氧杂-磷杂菲基对苯二酚酯(POPP)为阻燃剂,对PC/ABS合金进行阻燃改性。通过极限氧指数(LOI)测试、垂直燃烧(UL-94)测试、热重分析(TGA)测试、锥形量热(CONE)测试和扫描电镜(SEM)测试等表征方法研究其阻燃性能。结果表明,当阻燃剂添加量为15%时可以达到UL94 V-0级,LOI值为21.1%;最大热释放速率(Pk-HRR)下降41.7%,热释放总量(THR)下降31.1%;TGA和SEM分析显示改性PC/ABS合金具有更好的成炭效果,燃烧后能促进表面生成致密多孔炭层,有效的隔绝氧气提高材料的阻燃性能。  相似文献   

5.
以阻燃齐聚物(PSPTR)和酚醛树脂(PF)作为膨胀型阻燃剂(IFR)阻燃丙烯晴-丁二烯-苯乙烯共聚物(ABS), 通过极限氧指数(LOI)和水平垂直燃烧(UL-94)测试研究了阻燃PSPTR-PF/ABS体系的阻燃性能。研究表明, 当PSPTR:PF=1:1(质量比), 总质量分数为30%时, 体系的LOI为28.2%, UL-94达V-1级别。采用热重-红外联用(TG-IR)技术探索了阻燃体系的热性能和热分解历程, 发现PSPTR-PF阻燃剂的加入延缓了ABS的热分解, 提高了ABS的热稳定性能。采用SEM、 XRD和Raman光谱分析了燃烧炭层的形貌和结构。结果表明, PF不仅改善了炭层的致密度, 而且完善了炭层的石墨结构, 最终提高了ABS的阻燃性能。  相似文献   

6.
以三(2-羟乙基)异氰脲酸酯与对苯二甲酸为原料,通过熔融聚合反应,在无溶剂条件下制备出异氰酸酯类化合物(TT1),采用核磁氢谱、红外光谱、元素分析对TT1结构进行表征,通过热重对TT1的热稳定性进行测定。将TT1与结晶II-型聚磷酸铵(APP-II)按照不同比例复配得到膨胀型阻燃剂(IFR),将IFR添加到聚丙烯(PP)中,得到PP/IFR阻燃复合物。通过氧指数、UL-94垂直燃烧、锥形量热测试对PP/IFR复合物的阻燃及燃烧性能进行评定,通过TG对其热稳定性进行研究,以扫描电镜观测阻燃复合物燃烧后生成的炭层微观结构。测试结果表明,TT1和APP存在协效作用,复配的膨胀阻燃剂IFR对PP具有优良的阻燃效果。当IFR添加量为25%(质量分数,下同)时,PP/IFR的氧指数达到32.3%,UL-94垂直燃烧达到V-0级(样条厚3.0mm),且阻燃复合材料燃烧中热释速率明显减缓。  相似文献   

7.
用介孔分子筛(MCM-41)和Cr_2O_3协同膨胀型阻燃体系(IFR)对天然橡胶(NR)进行阻燃。为研究MCM-41和Cr_2O_3的阻燃协同作用,使用不同组分的两种协效剂协同IFR阻燃天然橡胶。对阻燃体系分别进行氧指数测试、热重分析、锥形量热分析、拉伸测试和残炭扫描分析。研究结果表明:天然橡胶单纯添加IFR时,其力学性能大幅下降,热学性能也没有显著提升。然而随着Cr_2O_3和MCM-41添加量的增加,橡胶基体的拉伸强度和断裂伸长率均有所改善,在IFR添加量为36%(与天然橡胶的质量比)、MCM-41添加量为1%,Cr_2O_3为3%时,IFR-MCM-41-Cr_2O_3复合阻燃剂的阻燃效果最好,热释放速率峰值和热释放总量均明显下降,IFR-MCM-41-Cr_2O_3/NR复合材料燃烧后,炭层发泡均匀且致密,极限氧指数(LOI)可以达到26.5%,垂直燃烧(UL-94)为V-0级。  相似文献   

8.
分别以膨胀型阻燃剂(IFR)为主阻燃剂、有机蒙脱土(OMMT)为协效阻燃剂,对聚丙烯(PP)进行阻燃改性。采用UL-94垂直燃烧、极限氧指数(LOI)、热失重(TG)及拉伸等测试分别表征PP/IFR/OMMT复合材料的阻燃性能、热稳定性能及力学性能,研究了IFR和OMMT对PP阻燃性能、力学性能和热稳定性能的影响。通过红外线光谱仪分析了试样物质组成及扫描电子显微镜(SEM)观察了试样的外观形貌。结果表明:OMMT的加入,使PP/IFR复合材料体系的热稳定性和阻燃性能得到极大提高。当添加2%(质量分数)OMMT,PP/IFR/OMMT复合材料的LOI值从18%上升到23%,阻燃级别从NR提升到V-0,并且无熔滴滴落,同时复合材料的力学性能也较好,拉伸强度达到34.46MPa,断裂伸长率能达到107.19%。  相似文献   

9.
以阻燃齐聚物(PSPTR)和酚醛树脂(PF)作为膨胀型阻燃剂(IFR)阻燃丙烯晴-丁二烯-苯乙烯共聚物(ABS),通过极限氧指数(LOI)和水平垂直燃烧(UL-94)测试研究了阻燃PSPTR-PF/ABS体系的阻燃性能.研究表明,当PSPTR:PF=1∶1(质量比),总质量分数为30%时,体系的LOI为28.2%,UL-94达V-1级别.采用热重-红外联用(TG-IR)技术探索了阻燃体系的热性能和热分解历程,发现PSPTR-PF阻燃剂的加入延缓了ABS的热分解,提高了ABS的热稳定性能.采用SEM、XRD和Raman光谱分析了燃烧炭层的形貌和结构.结果表明,PF不仅改善了炭层的致密度,而且完善了炭层的石墨结构,最终提高了ABS的阻燃性能.  相似文献   

10.
针对难以同时获得具有高阻燃性和高韧性聚乳酸(PLA)的现状,文中将聚磷酸铵和植酸钙复配形成膨胀阻燃剂加入到通过动态硫化法制备的韧性聚乳酸/不饱和聚酯共混物中(TPLA),详细研究了二者配比对TPLA阻燃性能、燃烧行为、热性能以及力学性能的影响。热重分析表明,该膨胀阻燃剂的引入并没有破坏TPLA的热稳定性,反而提高了其高温残炭量。极限氧指数(LOI)、垂直燃烧和锥形量热测试结果显示,该复配阻燃剂对TPLA表现出优异的阻燃性能,添加质量分数10%聚磷酸铵和5%植酸钙后,TPLA可以通过UL-94V-0级,LOI达到27%;与纯PLA相比,改性后TPLA的峰值热释放速率和总热释放分别下降57.5%和69.5%。力学测试结果表明,阻燃TPLA的断裂伸长率和缺口冲击强度相比聚乳酸有大幅上升,分别为聚乳酸的7.6倍和6.5倍。  相似文献   

11.
金静  王昊 《材料导报》2016,30(18):70-74
选用有机蒙脱土(OMMT)作为膨胀型阻燃剂(IFR)的协效剂,对聚丙烯/乙烯辛烯共聚物增韧共混体系(iPP/POE)进行阻燃改性,制备了iPP/POE/IFR/OMMT复合材料。利用氧指数仪、垂直燃烧测试、锥型量热仪、热失重分析和力学性能测试对材料的性能进行表征,系统研究了OMMT与IFR的配比对膨胀阻燃增韧共混体系阻燃性能及力学性能的影响。结果表明,OMMT的加入可催化材料的成炭过程,复合材料的燃烧性能得到明显提升,燃烧过程中熔融滴落的现象得到改善,同时热量以及有毒烟气释放量显著降低,而复合冲击强度也有一定提升。其中综合性能最优的配比是添加2%(质量分数)的OMMT和23%(质量分数)的IFR,其热释放速率峰值、平均热释放速率、平均质量损失速率以及生烟量较iPP/IFR/POE分别降低了28%、20%、17%以及95%,而冲击强度则提高了36%。研究结果为聚烯烃共混物阻燃改性的应用提供了指导。  相似文献   

12.
利用有机杂环磷酸酯1, 2, 3-三(5, 5-二甲基-1, 3-二氧杂环己内磷酸酯基)苯(FR)、聚磷酸铵(APP)和三聚氰胺(MEL)制备新型无卤三源膨胀阻燃聚丙烯(IFR/PP)材料, 通过极限氧指数(LOI)、水平燃烧(UL-94)、热重分析法(TGA)、锥形量热(cone)等方法研究了IFR对聚丙烯阻燃性能影响。结果表明: 当IFR总添加质量分数为30%(FR∶APP∶MEL质量比为4∶8∶3), 阻燃IFR/PP的LOI 达到36.2%, 其热释放速率峰值(pk-HRR)、热释放速率平均值(av-HRR)、有效燃烧热平均值(av-EHC)、比消光面积平均值(av-SEA)、质量损失速率平均值(av-MLR)及一氧化碳释放率平均值(av-CO)相对未阻燃PP分别降低75.9%、71.7%、76.4%、74.6%、58.3%和50.0%, 300 s时CO释放量接近0, 呈现出良好的阻燃、抑烟和抑毒性能; SEM研究表明, IFR催化PP在燃烧初期形成了致密、坚硬的优质炭层。  相似文献   

13.
传统膨胀型阻燃剂由酸源聚磷酸铵(APP)、碳源季戊四醇(PER)和气源三聚氰胺(MEL)按质量比3∶1∶1的配比组成。现将生物质单宁酸(TA)替代PER并与APP和MEL复配成绿色膨胀型阻燃剂应用于环氧树脂中,考察不同配比的酸源APP、新型碳源TA和气源MEL添加到环氧树脂(EP)中对复合材料的阻燃性能和力学性能的影响。实验结果表明:当新型膨胀型阻燃剂的添加量为20%(质量分数),APP、TA、MEL质量比为9.71∶6.61∶3.68时,所得到的阻燃EP-3复合材料的极限氧指数(LOI)值增长到38.80%,UL-94测试达到V-0级;锥形量热测试表明EP-3的热释放速率峰值(pHRR)、总热释放(THR)、总烟气生成量(TSP)和一氧化碳释放率平均值(av-CO)与添加传统膨胀型阻燃剂EP-0相比分别下降48.96%、14.33%、26.83%和28.01%,这说明APP/TA/MEL绿色膨胀型阻燃剂具有优异的协同阻燃效果;其次,通过TG、DTG和SEM分析可推测,该阻燃剂的阻燃机理为气相和固相协同阻燃机理,特别是该阻燃剂可促使基材形成致密强度高的炭层从而较大地提升固相阻燃效果。另...  相似文献   

14.
将自制含磷木质素基成炭剂(Lig-P)和聚磷酸铵(APP)复配用于制备阻燃聚乳酸(PLA)基复合材料,考察了协效阻燃剂有机蒙脱土(OMMT)对阻燃PLA性能的影响。采用极限氧指数(LOI)仪、垂直燃烧(UL-94)测试仪、锥形量热仪、热失重分析仪分别对Lig-P-APP-OMMT/PLA阻燃复合材料的阻燃性能、热稳定性能和燃烧行为进行了研究。结果发现,OMMT与Lig-P-APP存在明显的协同阻燃作用,当OMMT替代3wt%的Lig-P-APP时,Lig-P-APP-OMMT/PLA阻燃复合材料的LOI由27%增加至32%,UL-94等级由V1级提高至V0级;且Lig-P-APP-OMMT/PLA阻燃复合材料的最大热降解速率有所降低,800℃的残炭量提高了将近50%;此外,OMMT的引入使PLA阻燃复合材料的热释放速率明显降低,热释放速率峰值(PHRR)、烟释放速率峰值(PSPR)及总烟释放量(TSR)分别降低了26.4%、60%及26.3%。OMMT可明显提高阻燃PLA炭层的致密度及石墨化程度。   相似文献   

15.
为使得乙烯-醋酸乙烯酯共聚物(EVA)泡沫复合材料具有阻燃功能,分别添加膨胀石墨-聚磷酸铵(EGAPP)和膨胀石墨-聚磷酸铵-热塑性淀粉(EG-APP-TPS)两种不同复配阻燃剂,通过熔融共混和硫化发泡制备了无卤阻燃EVA泡沫复合材料。采用极限氧指数(LOI)、垂直燃烧(UL-94)、热分析质谱联用(TG-MASS)及扫描电镜(SEM)测试等对EG-APP/EVA及EG-APP-TPS/EVA泡沫复合材料进行表征。结果表明:EG-APP复配阻燃剂添加量为30wt%、EG与APP质量比为1∶4时,EG-APP/EVA泡沫复合材料的LOI达28.1%,UL-94为V-1级;而当EG-APP-TPS复配阻燃剂添加量同为30wt%,EG、APP与TPS质量比为1∶4∶1时,EG-APP-TPS/EVA泡沫复合材料的LOI可达29.3%,UL-94为V-0级。TG-MASS和SEM分析表明:EG、APP和TPS在气相和固相中均具有显著的协同阻燃作用。  相似文献   

16.
将三嗪成炭剂(CFA)与聚磷酸铵(APP)复配成膨胀型阻燃剂(IFR),采用极限氧指数、垂直燃烧和锥形量热等测试研究了不同CFA和APP的比例对动态硫化热塑性弹性体(TPV)阻燃性能和力学性能的影响;并用扫描电子显微镜、拉曼光谱、X射线衍射和红外光谱分析了残炭的形貌和结构,进一步研究了其成炭机制。研究结果表明,当CFA和APP的质量比为1∶3,总添加量为40%(质量分数)时,TPV/IFR复合材料具有最佳的阻燃性能,LOI达到26.4%,且通过UL-94 V-0级;锥形量热测试表明,TPV/IFR复合材料具有优异的阻燃和抑烟性能;力学性能测试表明,TPV/IFR复合材料仍具有优异的力学性能,其拉伸强度和断裂伸长率分别为4.19 MPa和391.06%;残炭的形貌和结构分析表明,TPV/IFR复合材料以凝聚相成炭阻燃作用为主,燃烧后形成含有P-O-C和P-O-P交联结构的致密石墨焦炭层,起到隔热隔氧的作用,提高了材料的阻燃性能。  相似文献   

17.
膨胀型阻燃聚乙烯MWNT复合材料的阻燃性及燃烧性能研究   总被引:1,自引:0,他引:1  
利用本实验室最近合成的两种新型阻燃剂(SPS和PTEN)与聚磷酸铵㈣及碳纳米管(MWNT)复配,并应用于低密度聚乙烯(LDPE),得到膨胀型阻燃LDPE/MWNT复合材料。通过氧指数(LOI)、垂直燃烧(UL-94)、锥形量热试验(CONE)对膨胀型阻燃LDPE/MWNT复合材料的阻燃性能和燃烧性能进行了研究。结果表明,在该膨胀型阻燃体系中,IFR与MWNT之间存在明显的协效阻燃作用,并且大大降低了低密度聚乙烯的可燃性和热释放速率(H刚时,而且燃烧后的残炭量大大增加。实验的最佳配方可使LDPE的氧指数值达30.6,UL-94达V-0级。  相似文献   

18.
多金属氧酸盐是一类新型催化剂, 在很多领域表现出良好的应用价值。改变多金属氧酸盐的金属离子类型可以调节其性能。本研究将磷钼酸(PMA)阴离子与三种不同的金属(镍(Ni)、钠(Na)、锌(Zn))离子反应形成磷钼酸盐(PMos), 将其作为催化剂提升膨胀阻燃聚丙烯(PP)的阻燃效率。结果表明, 单独添加膨胀阻燃剂(IFR)时, 添加量达到25wt%才能使PP复合材料的阻燃等级达到UL-94 V0级别, 然而在PP/IFR中添加0.5wt%的磷钼酸钠(NaPMo)或磷钼酸锌(ZnPMo)后, 仅需添加14.5wt%IFR即可使PP复合材料达到UL-94 V0级别, 而同样的配方下, 磷钼酸镍(NiPMo)只能使PP复合材料达到UL-94 V1级别。不同的金属离子在PP/IFR中具有不同的催化活性, 其中NaPMo和ZnPMo与IFR的匹配性较好, NiPMo较差。PMos通过促进IFR反应, 缓和燃烧过程的热释放速率, 并且形成阻隔作用更优良的炭层, 提高PP与IFR的匹配性, 进而提高了其在UL-94测试中的阻燃效率。  相似文献   

19.
采用熔融共混法制备了聚丙烯(PP)/磷酸锆(OZrP)膨胀型阻燃材料,热重分析表明添加OZrP的阻燃体系成炭量有所增加。当PP基体中含有25%膨胀型阻燃剂(IFR)时,复合材料的氧指数为33,垂直燃烧测试为UL-94V-1级别,当保持添加剂总量不变时,添加3%OZrP到PP/IFR体系中,氧指数增加到37,垂直燃烧达到V-0级别。IFR与OZrP间存在协效作用,合适的添加比例有利于提高复合材料的阻燃性能。  相似文献   

20.
单一的磷杂菲、磷腈类阻燃剂的阻燃效果有限,为了改善9,10-二氢-9-氧杂-10-磷杂菲-10-硫化物(DOPS)对环氧树脂(EP)的阻燃效果,将DOPS和六苯氧基环三磷腈(HPCTP)复配应用于EP。在总含P量为1.2wt%时,通过调整磷杂菲和磷腈阻燃剂中含P量的比例,将DOPS和HPCTP复配添加到EP中,制备EP复合材料。利用极限氧指数(LOI)、垂直燃烧(UL-94)、热重(TG)、锥形量热(CONE)、扫描电镜-能量色散X射线谱(SEM-EDS)、热重-红外光谱联用(TG-IR)等测试手段研究不同比例的磷杂菲和磷腈基团对EP热稳定性和阻燃性能的影响,探究双基协同阻燃规律和机制。研究结果表明:P、S元素之间存在协同阻燃作用,当总含P量为1.2wt%时,复合体系中随着含S量的增加,HPCTP-DOPS/EP的LOI值和UL-94等级逐渐升高,当HPCTP和DOPS中的含P量比为0.2∶1时,HPCTP-DOPS/EP的LOI值为30.4%,达到UL-94 V-0级,总热释放量(THR)和热释放速率峰值(PHRR)显著降低,燃烧后形成了更加致密、稳定的膨胀炭层,优于两种阻燃剂单独使...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号