首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
以玉米蛋白为原料,制备活性环(组氨酸-脯氨酸)二肽(cyclo(His-Pro))前体——His-Pro和Pro-His二肽。分别采用碱性蛋白酶、复合蛋白酶、风味蛋白酶和木瓜蛋白酶对提取的玉米γ-醇溶蛋白进行单酶和双酶分步水解,筛选出最佳酶解工艺。采用碱性蛋白酶和风味蛋白酶分步水解的水解产物中cyclo(His-Pro)前体的含量比其他水解产物要高。采用响应面和L_(16)(4~5)正交试验对碱性蛋白酶和风味蛋白酶分步水解γ-醇溶蛋白的工艺进行了优化,最佳水解条件为:底物质量浓度32 mg/m L,先加入12 100 U/g的碱性蛋白酶水解6.5 h,再加入17 000 U/g的风味蛋白酶于p H7.5、55℃条件下水解6 h。采用超高效液相色谱法和电喷雾质谱法对cyclo(His-Pro)前体进行定量和定性分析,结果表明水解产物中含有较高含量的脯氨酸-组氨酸二肽(6.88 mg/g)。  相似文献   

2.
复合酶法水解豆粕制备ACE 抑制肽   总被引:1,自引:0,他引:1  
碱性蛋白酶分别与中性蛋白酶、复合蛋白酶、胰蛋白酶和风味蛋白酶组合,采用分步法进行水解豆粕实验,以提高豆粕水解液的ACE抑制率。结果表明:当碱性蛋白酶和胰蛋白酶两种酶分步加入进行水解时,水解度最高,达到46.83%。进一步通过响应面分析法,优化碱性蛋白酶和胰蛋白酶组合分步水解条件,发现先加入5100U/g碱性蛋白酶,在pH9的条件下水解2h,之后再加入950U/g胰蛋白酶,在pH8的条件下继续水解2h,最终水解产物的ACE抑制率可达到72.21%。  相似文献   

3.
李鸿梅  高名利  张路 《食品科技》2011,(6):190-194,199
碱性蛋白酶水解玉米醇溶蛋白,精制后的水解产物为玉米醇溶蛋白肽。根据玉米醇溶蛋白肽对邻苯三酚自氧化的抑制活性,采用葡聚糖凝胶层析法及高效液相层析(HPLC)法分离纯化得到活性蛋白肽的几种组分,探讨了几种组分对超氧阴离子自由基的清除活性。同时,以α-生育酚为阳性对照,探讨了活性蛋白肽及其各组分的还原力。结果表明,经SephedaxG-10葡聚糖凝胶层析分离所得组分4的抗氧化活性最强,具有较高的还原力;组分4富含谷氨酸、丙氨酸、亮氨酸、组氨酸、脯氨酸和苯丙氨酸。  相似文献   

4.
脱脂菜籽粕中蛋白质的分步酶水解研究   总被引:9,自引:0,他引:9  
以脱脂菜籽粕为原料,对碱性蛋白酶和风味蛋白酶分步水解其中的蛋白质进行了研究。结果表明,在碱性蛋白酶和风味蛋白酶的最适作用温度和起始pH值下,先用3000U/g碱性蛋白酶水解4h后,再用3000U/g的风味蛋白酶水解4h,水解产物的水解度和氮收率分别为10%和91.14%。水解产物的口味平淡,三氯乙酸氮溶解指数为90.18%。  相似文献   

5.
酶解玉米醇溶蛋白获得生理功能短肽的研究,多采用碱性蛋白酶和混合酶等商品酶制剂。通过培养Bacillus natto 918菌,采用固态发酵方式生产蛋白酶,测定水解度,确定水解经碱处理的玉米醇溶蛋白最佳酶解条件为:底物浓度10%、加酶量8 000 U/g、pH=9.5、反应温度40℃、反应时间3.0 h,在此条件下水解率达到33.8%。  相似文献   

6.
选择碱性蛋白酶、中性蛋白酶、胰酶、木瓜蛋白酶和风味蛋白酶5种蛋白酶对麦胚蛋白进行水解,并考察其水解产物的抗氧化活性。结果表明,中性蛋白酶为制备麦胚抗氧化肽的最适蛋白酶,其最佳水解条件为:底物质量分数4%,酶添加量6 000U/g,酶解温度50℃,pH值7.5,水解至270min时抗氧化活性最大。  相似文献   

7.
目的 以牦牛血为原料,在碱性蛋白酶水解基础上,加入风味蛋白酶建立复酶分步水解牦牛血液蛋白工艺。方法 以蛋白水解率为指标,运用单因素与正交试验获得碱性蛋白酶水解工艺,在此基础上采用四因素三水平正交试验优化复酶水解pH、水解温度、酶浓度、水解时间,获得碱性蛋白酶与风味蛋白酶分步水解工艺。结果 复酶工艺为在底物浓度1:6 g/mL、最适pH9、最适温度55 ℃、1.00 %的碱性蛋白酶水解1 h后,调节pH到7,添加0.75 %的风味蛋白酶继续水解5 h,可获得最高蛋白水解率为30.77±0.18 %。结论 对研究酶水解牦牛血制备高附加值产品具有重要参考作用。  相似文献   

8.
二次旋转正交组合设计优化羊骨蛋白酶解工艺   总被引:3,自引:0,他引:3  
詹萍  张晓鸣  田洪磊 《食品工业科技》2012,33(19):182-186,190
以新鲜羊骨为原料,选用碱性蛋白酶和风味蛋白酶按序分步水解羊骨蛋白,采用二次旋转正交组合设计优化双酶水解羊骨蛋白工艺条件。结果表明,在初始pH为8.5,初始温度为55℃,羊骨蛋白的最佳酶解方案为:底物浓度为10%,碱性蛋白酶添加量为3000u/g,作用时间为5h;风味蛋白酶添加量为3500u/g,作用时间为3.5h。  相似文献   

9.
将高温高压技术应用于玉米环(组氨酸-脯氨酸)二肽(cyclo(His-Pro),CHP)的制备,以玉米蛋白水解物为原料,在水相溶液中采用高温高压法对其进行环化,合成CHP。通过单因素试验考察反应温度、底物质量浓度、反应时间和KHCO3浓度对CHP提取量的影响,应用响应面试验设计对高温高压环化反应条件进行优化。结果表明最佳反应条件为反应温度125.9 ℃、反应压力0.25 MPa、底物质量浓度20.5 mg/mL、KHCO3浓度0.16 mol/L、反应时间5.3 h,此条件下CHP提取量可达6.58 mg/g。采用超高效液相色谱-串联质谱法对水解物中的CHP进行进一步鉴定,结果表明制备的玉米CHP与预期结构相符。  相似文献   

10.
以高粱为原料,通过碱法提取制备高粱碱溶蛋白,利用不同蛋白酶对其进行酶解,结果表明Alcalase碱性蛋白酶水解高粱蛋白得到的水解产物水解度和血管紧张素转化酶(ACE)抑制率最高。在此基础上进一步考察了碱性蛋白酶酶量、pH值、温度、反应时间这4个因素对水解产物ACE抑制率的影响,并通过响应面实验优化酶解条件,得到Alcalase碱性蛋白酶水解高粱碱溶蛋白制备ACE抑制肽最优工艺为:酶解温度55.5℃,酶解时间1.68 h,pH值7.95,酶量2 360 U/g,此条件下实测ACE抑制率达到75.98%,该ACE抑制肽具有良好的热稳定性和酸碱稳定性,并且在体外经胃肠道酶系消化酶解后,依然能保持良好的抑制活性。  相似文献   

11.
为探索制备马鹿茸降血糖肽的最佳工艺条件,以α-葡萄糖苷酶抑制率为指标,从碱性蛋白酶、风味蛋白酶、中性蛋白酶和胰蛋白酶中筛选出两种酶,根据其体外降血糖效果确定酶的作用顺序,再以水解度、α-葡萄糖苷酶抑制率和蛋白质回收率为指标进行单因素试验和正交试验,优化降血糖肽制备工艺条件。结果表明:碱性蛋白酶和风味蛋白酶比中性蛋白酶和胰蛋白酶更适合用于制备马鹿茸降血糖肽。采用碱性蛋白酶-风味蛋白酶顺序对马鹿茸进行水解,所得酶解产物的α-葡萄糖苷酶抑制率、蛋白质回收率和水解度较高,分别为21.11%、39.12%、19.88%。通过单因素试验和正交试验确定双酶酶解最佳工艺条件为先用碱性蛋白酶在p H 8.0、60℃、底物质量分数12%、加酶量5 000 U/g条件下酶解3 h,再用风味蛋白酶于p H 6.5、45℃、底物质量分数5%、加酶量6 000 U/g条件下酶解1 h。双酶分步水解终产物的α-葡萄糖苷酶抑制率受质量浓度的影响,当质量浓度为3 mg/m L时,α-葡萄糖苷酶抑制率可达94.09%,IC50值为1.82 mg/m L。碱性蛋白酶-风味蛋白酶双酶分步水解马鹿茸可获得高α-葡萄糖苷酶抑制率的降血糖肽。  相似文献   

12.
为了开发和利用花生蛋白资源,生产高附加值蛋白产品,以花生分离蛋白为原料,采用Alcalase 和Flavourzyme 分步水解法制备花生多肽。通过单因素试验和响应面中心组合设计试验,研究Flavourzyme 水解花生分离蛋白过程中加酶量、底物质量分数、酶解温度、酶解时间和酶液pH 值等因素对水解的影响。建立水解液中可溶性氮质量浓度与各种影响因素的回归模型;确定Flavourzyme 酶解反应的最佳工艺参数为pH7.0、加酶量1714U/g 底物、底物质量分数5%、酶解温度55℃、酶解时间90min。在此条件下,酶解产物中可溶性氮质量浓度为19.44mg/mL。  相似文献   

13.
以小黄鱼下脚料为原料,利用酶解技术获得小黄鱼下脚料风味前体物质,通过单因素及响应面分析,确定碱性蛋白酶(Alcalase)和风味蛋白酶(Flavourzyme)同步酶解工艺,研究料水比、酶解时间、酶用量、初始pH 值和酶解温度对酶解液水解度和感官品质的影响。结果表明,优化的酶解工艺条件为料水比1:7(g/mL)、酶解温度55℃、酶解时间6.5h、初始pH8.0、Alcalase 用量2.5%、Flavourzyme 用量3.0%。在此酶解条件下的水解度为40.11%,所得酶解液中氨基酸含量86.383g/100g,其中必需氨基酸32.785g/100g,鲜味和甘味氨基酸38.384g/100g,与酶解前相比氨基酸含量明显增加,氨基酸总量增加了67.56%,其中必需氨基酸增加了82.02%,呈味氨基酸增加了79.52%,产品具有浓郁的小黄鱼鱼香味。  相似文献   

14.
以实验室自制的脱脂蚕蛹蛋白为原料,利用酶工程技术,通过对中性蛋白酶、碱性蛋白酶、木瓜蛋白酶、复合蛋白酶、风味蛋白酶、胰蛋白酶等的筛选及单因素和响应面优化试验,对ACE抑制肽的制备工艺条件进行较系统的研究。结果表明:选择碱性蛋白酶作为脱脂蚕蛹蛋白制备ACE抑制肽的酶,制备ACE抑制肽的最佳工艺条件为料液比11.88:100、温度50.22℃、pH 9.46、加酶量7.03%、酶解4h。在此条件下制备的ACE抑制肽的ACE抑制率达到41.98%。  相似文献   

15.
以火麻蛋白为原料,在碱性蛋白酶、中性蛋白酶、风味酶和木瓜蛋白酶4种单酶酶解火麻蛋白的基础上,再优选碱性+中性蛋白酶、碱性+风味酶、碱性+木瓜蛋白酶双酶分步对火麻蛋白进行酶解,酶解物(HPH)及其超滤组分的体外血管紧张素转化酶(ACE)抑制活性采用高效液相检测法(HPLC)进行测定。结果得到火麻蛋白最佳酶解组合为碱性+中性蛋白酶,最佳工艺条件为:碱性蛋白酶加酶量8000 U/g,pH10.0,酶解温度50℃,酶解时间4 h;中性蛋白酶加酶量8000 U/g,pH7.0,酶解温度45℃,酶解时间4 h,分步酶解物水解度(DH)和ACE抑制活性分别达74.52%和82.14%,但其与超滤各组分对ACE抑制活性差异并不显著。该研究为产业化制备火麻降血压肽提供理论依据。  相似文献   

16.
采用生物酶解技术对双孢蘑菇进行酶解,从而充分利用并提取其中的滋味物质,对比4?种蛋白酶(中性蛋白酶、木瓜蛋白酶、复合蛋白酶及风味蛋白酶)对双孢蘑菇的酶解效果,结果表明,风味蛋白酶酶解后水解液可溶性固形物、呈味氨基酸含量显著高于其他处理组,可以显著除去水解液的苦味、涩味,保持其鲜味,并显著提高其咸味和滋味的丰富性,水解液清透明亮。因此选择风味蛋白酶对双孢蘑菇进行酶解处理,并以水解液游离氨基酸浓度为指标,对酶解时间、酶解温度、pH值和加酶量4?个因素进行单因素试验以及L9(34)正交试验,结果表明酶解温度对风味蛋白酶酶解效果的影响达到极显著水平,pH值对风味蛋白酶的酶解效果达到显著水平,风味蛋白酶最佳酶解工艺为pH?6.5、酶解温度60?℃、加酶量1?000?U/g、酶解时间3?h,该工艺条件下所得到的水解液(游离氨基酸浓度140.27?mmol/L)可以作为双孢蘑菇调味品加工基料。  相似文献   

17.
以鸡骨架高压蒸煮后的鸡骨渣为原料,研究不同蛋白酶对其酶解效果及酶解产物氨基酸的组成。结果表明:风味蛋白酶具有较强的水解能力,水解度(DH)达到23.15%;其酶解液澄清度高并具有较强的鸡鲜味;其酶解产物中7 种必需氨基酸含量为68.90%,谷氨酸、甘氨酸、天冬氨酸和精氨酸等风味氨基酸分别占氨基酸总量的5.09%、1.40%、2.59% 和10.45%。  相似文献   

18.
鱼骨中胶原蛋白含量丰富,本研究采用碱性蛋白酶和风味蛋白酶对鲴鱼骨进行分步酶解制备骨胶原多肽。通过单因素和正交优化实验,确定碱性蛋白酶水解鲴鱼骨胶原蛋白的最佳工艺条件为:料液比(w/v)4:50,酶解温度45%,加酶量4%,pH值8,酶解时间3h,在此条件下,水解度达到39.49%。风味蛋白酶分步酶解的最佳工艺条件为酶解温度50%,加酶量4%,pH值7.5,酶解时间3h,在此条件下,水解度达到47.2%,水解产物的风味在一定程度上也得到了改善。  相似文献   

19.
王金玲  江连洲  许晶 《食品科学》2012,33(24):52-55
以来源丰富、价廉的高变性豆粕为原料制备大豆功能性多肽,并对多肽的降血脂作用进行研究。通过单因素及正交试验法确定Alcalase碱性蛋白酶水解高变性豆粕的最佳工艺条件。采用小鼠高脂模型试验,通过小鼠体质量以及各项血脂指标的变化,评价酶解大豆多肽的降血脂功能。结果表明:Alcalase碱性蛋白酶的最佳水解工艺条件为底物质量浓度5g/100mL、酶添加量14400U/g、pH9.0、酶解温度55℃、酶解时间4h,此条件下,豆粕蛋白的水解度为37.5%;酶解大豆多肽对高脂小鼠具有一定的降血脂作用,主要表现为显著降低小鼠的血清TC值及提高小鼠的血清HDL-C值(P<0.05)作用。  相似文献   

20.
将高温高压技术应用于环(组氨酸-脯氨酸)二肽(cyclo(His-Pro),CHP)的制备。以二肽甲酯盐酸盐为原料,采用高温高压辅助环化法在水中制备CHP,通过单因素试验考察了各种反应变量如压力、时间、溶液pH值以及底物质量浓度对CHP产率的影响,采用正交试验对高温高压辅助环化工艺条件进行优化。采用超高效液相色谱法和电喷雾质谱技术对产物中的CHP进行定量和定性分析。结果表明,最佳的反应条件为:反应压力0.20 MPa、反应时间3.5 h、溶液pH 6.0、底物质量浓度15 mg/mL。在此条件下可以得到较高产率(91.35%)的CHP,并且反应中没有观察到消旋。与传统的甲醇回流法相比,本研究的环化方法省时、高效、环保,并且能够得到较高的产率,同时产物没有发生消旋。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号