首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
通过固相法制备出锂离子电池正极材料LiMn_2O_4和LiMn_(1.95)Mg_(0.05)O_(3.9)F_(0.1)样品,并通过XRD、SEM、EDS、充放电测试、CV和EIS对其结构、形貌以及电化学性能进行了研究。结果发现,适量Mg、F的掺杂未改变LiMn_2O_4的尖晶石结构。在0.2C倍率下,样品LiMn_2O_4和LiMn_(1.95)Mg_(0.05)O_(3.9)F_(0.1)的首次放电比容量分别为121.3mAh/g和123.7mAh/g,循环60次后,容量保持率分别为82.1%和91.4%。在5C倍率下,样品LiMn_(1.95)Mg_(0.05)O_(3.9)F_(0.1)的放电比容量为92.4mAh/g,而LiMn_2O_4的放电比容量仅为76.5mAh/g。Mg、F的共同掺杂,可以有效抑制锰酸锂晶体中JahnTeller效应导致的结构畸变,稳定尖晶石结构,明显改善其循环稳定性和倍率性能,并提高材料的初始放电比容量。  相似文献   

2.
采用水热法合成由细长棒状结构组成的刺球形二氧化锰(MnO_2)。然后以MnO_2为前驱体,采用两步烧结方式合成球形形貌的锰酸锂(LiMn_2O_4)和锰酸铁氟锂(LiFe_(0.06)Mn_(1.94)O_(3.88)F_(0.12)),通过扫描电镜(SEM)对MnO_2进行了形貌分析,通过SEM、X射线衍射分析(XRD)、循环伏安测试(CV)和充放电测试对LiMn_2O_4和LiFe_(0.06)Mn_(1.94)O_(3.88)F_(0.12)进行了表征。结果表明铁(Fe)、氟(F)复合掺杂的LiFe_(0.06)Mn_(1.94)O_(3.88)F_(0.12)材料具备规整的形貌、更稳定的晶体结构、良好的循环性能和倍率性能。在0.2C时,LiFe_(0.06)Mn_(1.94)O_(3.88)F_(0.12)材料的首次放电比容量为131.8mAh/g,电化学性能较好,而LiMn_2O_4仅为124.6mAh/g。在0.5C倍率下,LiFe_(0.06)Mn_(1.94)O_(3.88)F_(0.12)的首次放电比容量为121.6mAh/g,而LiMn_2O_4仅为117.7mAh/g,循环80次后,容量保持率分别为83.06%和77.57%。  相似文献   

3.
为了抑制Jahn-Teller效应导致的结构畸变对锂离子电池正极材料LiMn_2O_4结构的影响,通过溶胶-凝胶法成功制备出了尖晶石LiMn_2O_4和镁离子掺杂的LiMg_(0.1)Mn_(1.9)O_4样品。并用X射线衍射、扫描电镜、充放电测试、X射线能谱、循环伏安对样品结构、形貌和电化学性能进行研究,发现适量的镁离子掺杂未改变LiMn_2O_4的结构。在0.5C倍率下,LiMg_(0.1)Mn_(1.9)O_4样品的首次放电比容量稍有降低,但循环100次后,容量保持率高达93.8%,远高于未掺杂镁样品的容量保持率(75.8%);在5C倍率下,LiMg_(0.1)Mn_(1.9)O_4的放电比容量高达91mAh/g,而未掺杂的样品仅为72.9mAh/g。结果表明:镁离子掺杂可以有效抑制Jahn-Teller畸变,改善LiMn_2O_4的电化学性能。  相似文献   

4.
Co、Cr、Al掺杂LiMnO_2的离子交换法制备及其性质研究   总被引:1,自引:0,他引:1  
采用离子交换法制备Co, Cr及Al掺杂LiMnO_2,通过X射线衍射、扫描电子显微镜和恒电流充放电等技术检测和分析合成产物的物相、形貌及电化学性能.研究表明掺杂后LiMnO_2仍然保持原来的结构,但晶粒形貌发生了改变,晶格常数总体变小.与未掺杂的LiMnO_2相比,Co、Cr及Al掺杂LiMnO_2具有更高的放电容量和更好的循环性能.随着掺杂量的增加,Co、Cr及Al掺杂LiMnO_2的放电容量逐步下降,但循环性能不断改善.在掺杂的LiMnO_2中,LiMn_(0.95)Cr_(0.05)O_2的放电容量最高,达到198.1mAh/g,而LiMn_(0.85)Al_(0.15)O_2的放电容量最小,LiMn_(0.90)Cr_(0.10)O_2循环性能最好,而Co掺杂的循环性能最差.  相似文献   

5.
采用溶胶-凝胶法制备出非化学计量镍(Ni)掺杂的钒酸镍锂(LiNi_xV_3O_8)材料,并组装成扣式钒酸镍锂/锰酸锂(LiNi_xV_3O_8/LiMn_2O_4)电池。对制成的材料进行X射线衍射(XRD)分析表明,在Ni掺杂量低于5%(摩尔百分数)条件下,材料主相为层状结构钒酸锂(LiV_3O_8);超过5%,材料会形成钒酸亚镍(NiV_3O_8)相。场发射扫描电子显微镜(FESEM)分析可知,材料为长度700~800nm,宽度400~500nm的薄片状颗粒。从循环伏安谱图中可见两对准可逆的氧化还原峰,分别对应电池充电和放电曲线上的两个充放电平台。适量的Ni掺杂可提高LiNi_xV_3O_8/LiMn_2O_4电池的比容量和循环性能,减缓循环过程的阻抗增长。在Ni掺杂量5%条件下电池性能最佳,其首次放电比容量为93.1mAh/g,50次循环后比容量仍保持70.2mAh/g。  相似文献   

6.
通过以乙酸镧、乙酸锶和乙酸锰制备的锰酸锶镧(La_(0.65)Sr_(0.35)MnO_3)和尖晶石型锰酸锂(LiMn_2O_4)正极材料作为原料,采用溶胶-凝胶法制备了质量分数分别为0.5%、1.0%和2.0%的锰酸锶镧表面包覆的LiMn_2O_4正极材料。采用X-射线衍射(XRD)、扫描电镜(SEM)、充放电循环测试等对包覆材料的结构、形貌和电化学性能进行表征,研究不同包覆比例对材料的微观结构、形貌及在502030型电池中电的化学性能。通过XRD和SEM分析可知,包覆锰酸锶镧对锰酸锂的结构并没有改变,当包覆比例为1.0%时,包覆材料分布均匀。对材料进行电化学性能测试发现,纯相LiMn_2O_4首次放电比容量为94.5mAh/g,循环500周后容量保持率为57.78%;包覆比例为1.0%的LiMn_2O_4首次放电比容量为106.2mAh/g,循环500周后容量保持率为64.22%,首次放电比容量增加了12.4%,容量保持率提高了6.44%。结果表明,经过包覆后材料的电化学性能得到了明显提高。  相似文献   

7.
通过X射线衍射、扫描电镜、恒流充放电、循环伏安和阻抗(EIS)等技术对材料的形貌和电化学性能进行分析,研究了Mg、Al同时掺杂对溶胶-凝胶法合成单斜晶型Li_3V_2(PO_4)_3/C材料电化学性能的影响。结果表明:相对纯的磷酸钒锂/C(LVP/C),少量的掺杂没有影响材料的结构,电化学性能有显著提升,并且Li_(2.9)Mg_(0.05)V_(1.9)Al_(0.1)(PO_4)_3/C材料具有最好的电化学性能。在室温3~4.3V充放电平台下,以0.1C首次放电比容量达到130.7mAh/g,第50次循环的放电比容量仍有127.2mAh/g,容量保持率为97.3%。  相似文献   

8.
为了探索制备方法对锰酸锂(LiMn_2O_4)正极材料电化学性能的影响,以硝酸铝[Al(NO_3)_3·9H_2O]和锰酸锂为原料,分别通过溶胶-凝胶法、水热法和微乳液法制备了Al_2O_3包覆LiMn_2O_4正极材料。采用X射线衍射仪(XRD)和场发射扫描电镜(SEM)对试样的表面形貌进行了表征,采用充放电和循环寿命测试等方法研究了试样的电化学性能。结果表明:少量的Al_2O_3包覆对LiMn_2O_4材料的晶体结构并没有影响;溶胶-凝胶法制备的Al_2O_3涂层为无序二维纳米状的网络结构,水热法为纳米片状,微乳液法为棉花絮状,且不能完全包覆;包覆后的试样首次放电比容量都有所下降,但其具有较好的循环性能,其中,以溶胶-凝胶法制备的试样在25℃、1 C条件下循环450周,容量保持率为86.53%;55℃,1 C循环200周的容量保持率为85.46%;而纯相LiMn_2O_4在25,55℃条件下的容量保持率仅分别为57.84%,52.88%。  相似文献   

9.
采用溶胶-凝胶法在锰酸锂(LiMn_2O_4)正极材料表面包覆一层[Li,La]TiO_3(LLTO),通过XRD、SEM、EDS等对LLTO包覆LiMn_2O_4材料的晶体结构、形貌及组成元素进行表征分析,并对其电化学性能进行了研究。结果表明:改性后的尖晶石LiMn_2O_4无杂相出现,循环性能稳定;在1C电流倍率条件下循环200次后,1.5%LLTO包覆的LiMn_2O_4材料在所有改性样品中循环性能最佳,其比容量为106.1mAh/g,高于空白LiMn_2O_4的92.7mAh/g,容量保持率高达90.8%,高于空白LiMn_2O_4的74.1%。  相似文献   

10.
钴镍掺杂锰酸锂的电化学性能研究   总被引:1,自引:0,他引:1  
采用固相烧结法分别制备了钴掺杂和镍掺杂锰酸锂锂离子电池正极材料,同时制备了纯相锰酸锂进行比较.用电感耦合等离子发射光谱仪、X射线衍射仪、电子扫描电镜和电池性能测试系统对产物的组成、结构特征、微观表面形貌和恒流充放电性能进行了表征.结果表明:所制备的掺杂锰酸锂LiMn0.9 Ni0.1O2、LiMn0.9 Co0.1O2的结晶度高,无杂质相,材料颗粒的粒径均匀、表面光滑;首次放电比容量分别为114.7mAh/g和110.8mAh/g(0.5mA/cm,2.8~4.4V,vs.Li+/Li);50次循环后,放电比容量为107.2mAh/g和103.3mAh/g,50次循环比容量保持率分别达到94.1%和95.4%.  相似文献   

11.
采用温和的制备方法成功制备出多孔球状LiMn_2O_4,首先制得MnCO_3和MnO_2混合微球前驱体,随后将前驱体与LiNO3混合均匀合成多孔球状LiMn_2O_4。通过X射线衍射仪和扫描电镜分析表明:所制得材料为纯相尖晶石LiMn_2O_4、无杂质相且所制备LiMn_2O_4呈现出多孔的球状结构形貌;电化学性能测试表明:该多孔球状LiMn_2O_4具有优异的电化学性能,多孔球状LiMn_2O_4的首次充放电比容量为118.9mAh/g(0.5C,3.5~4.3V),经过100次充放电循环后,放电比容量为108.6mAh/g,容量保持率为91.3%;在5C的倍率下多孔球状LiMn_2O_4的放电容量可达70mAh/g。  相似文献   

12.
通过一种全新的固相法合成尖晶石LiMn_2O_4,先制得Mn_3O_4,再由制得的Mn_3O_4和LiCO_3合成LiMn_2O_4正极材料。对由此方法得到的尖晶石LiMn_2O_4的结构和电化学性能进行了研究。通过X射线衍射仪(XRD)和电子扫描电镜(SEM)分析表明,所制材料为纯相尖晶石LiMn_2O_4,颗粒均匀,无杂质相;通过电化学性能测试表明,该尖晶石LiMn_2O_4具有良好的电化学性能:首次充放电比容量为120.7mAh/g(0.5C,3.5~4.3V),经过100次充放电循环后,放电比容量为118mAh/g,容量保持率为97.8%。  相似文献   

13.
通过静电纺丝法成功制备出尖晶石型LiMn_2O_4纳米纤维前驱丝,进一步在600~800℃之间对纳米纤维前驱丝进行煅烧,在700℃得到表面光滑且结晶度良好的LiMn_2O_4纳米纤维材料。通过X射线衍射可知LiMn_2O_4的结构为尖晶石型;通过扫描电镜发现LiMn_2O_4的直径约为350nm;再将LiMn_2O_4正极材料组装成扣式电池,通过测试其充放电性能,可知LiMn_2O_4正极材料在0.1C倍率下的首次充放电比容量分别为114.1和112mAh/g,在1C、2C、5C和10C倍率下的放电比容量分别为109.1、101.9、91.3和80.6mAh/g,而且在1C倍率下循环100次之后,容量保持率为92.7%;循环伏安曲线表明其两对氧化还原峰为3.92/4.10V和4.05/4.22V,是典型的尖晶石型LiMn_2O_4材料,且循环性能良好;由交流阻抗图谱可知LiMn_2O_4样品的电荷转移阻抗约为622.21Ω。  相似文献   

14.
以氢氧化锂(LiOH·H_2O)和乙酸锰[Mn(CH_3COOH)_2·4H_2O]为锂源和锰源,柠檬酸(C_6H_8O_7·H_2O)为络合剂,用喷雾干燥法制得球形前驱体,经煅烧制得尖晶石型锰酸锂(LiMn_2O_4)。用XRD、SEM、恒流充放电和循环伏安对制得的材料进行表征。结果表明,在空气气氛下,经400℃煅烧,无定形的前驱体完全转化为LiMn_2O_4。当煅烧温度升至700℃时,样品的电化学性能最好,此时LiMn_2O_4呈多孔的微米球形,粒径分布为2.0~3.5μm,孔壁由25~52nm的晶粒组成。在0.2C下,电压范围在3.0~4.5V的首次放电比容量为116mAh/g,30次循环后的容量保持率为100%,具有很好的循环稳定性。  相似文献   

15.
以氢氧化物共沉淀法合成前驱体,氢氧化锂为锂源,通过高温煅烧合成了锂离子电池正极材料LiMn_(0.5)Ni_(0.5-x)Co_xO_2(x=0、0.1、0.2)。通过X射线衍射(XRD)、扫描电子显微镜(SEM)、恒电流充放电测试、循环伏安法(CV)及电化学交流阻抗谱(EIS)技术对制备条件和钴掺杂量进行了研究。结果表明,所制材料均具有良好的α-NaFeO_2层状结构;当pH=10.5,煅烧温度为850℃,x=0.1时,所制备LiMn_(0.5)Ni_(0.4)Co_(0.1)O_2材料0.2C放电容量达155mAh/g,5C放电容量仍达110mAh/g,0.2C倍率下循环50次后的容量保持率达98%。  相似文献   

16.
尖晶石锰酸锂电池容量衰减是限制其大规模应用的瓶颈问题,抑制锰溶解是减少其容量衰减的重要措施之一.本文以MnCO_3和Li_2CO_3为原料,采用球磨结合高温固化的方法制备了尖晶石LiMn_2O_4原材料,采用溶胶-凝胶法实现对尖晶石锰酸锂进行表面包覆二氧化钛.将包覆后材料经过高温长时间煅烧,使得金属钛离子能扩散到锰酸锂颗粒材料表层中,形成LiTi_xMn_(2-x)O_4尖晶石结构薄层.通过对锰酸锂在高温电解液中的溶解对比性试验,给出掺杂薄层作用的直接证据,并对全电池高温环境下电化学循环性能进行了对比测试.结果表明,锰酸锂颗粒表面涂覆TiO_2后,经过750℃煅烧6 h,实现了在尖晶石LiMn_2O_4表面形成了LiMn_(2-x)Ti_xO_4掺杂薄层,其形态、结构均与LiMn_2O_4类似.表面掺杂TiO_2工艺能够显著抑制LiMn_2O_4高温环境下的锰离子溶解,提高锰酸锂电池的使用寿命和高温性能.  相似文献   

17.
为进一步提高动力电池正极材料锰酸锂(LiMn_2O_4)的循环稳定性,通过溶胶-凝胶法用快离子导体La_(0.8)Sr_(0.2)MnO_3作为包覆材料对LiMn_2O_4进行表面修饰,探讨了不同包覆量对复合材料电化学性能的影响。采用X射线衍射仪(XRD)、场发射扫描电镜(FESEM)和透射电子显微镜(TEM)对样品的微观结构以及形貌进行表征。结果表明:La_(0.8)Sr_(0.2)MnO_3的包覆并没有改变LiMn_2O_4晶体结构及空间构型;相比纯的LiMn_2O_4样品,La_(0.8)Sr_(0.2)MnO_3包覆后的样品颗粒表面较为粗糙;涂层为薄膜状结构,均匀且完全包覆在LiMn_2O_4颗粒的表面。利用电化学测试方法测试其电化学性能,测试结果表明,当La_(0.8)Sr_(0.2)MnO_3包覆量为5%时,具有较好的电化学性能,首次放电比容量为127.4 m A·h/g(0.1 C),25℃循环400次后容量保持率为91.2%,55℃循环100次后容量保持率为91.1%;与未经表面修饰的样品相比,其首次放电比容量为119.1 m A·h/g(0.1 C),400次的容量保持率为61.9%,100次容量保持率为77.9%,La_(0.8)Sr_(0.2)MnO_3包覆后的样品的电化学性能尤其是循环性能得到明显的提高。  相似文献   

18.
采用溶胶-凝胶法合成了Mn掺杂的钠离子电池正极材料Na_3V_2(PO_4)_2F_3。用XRD、SEM、恒流充放电和交流阻抗等对样品进行了表征。结果表明,适量Mn掺杂不会破坏Na_3V_2(PO_4)_2F_3的晶体结构;随着Mn掺杂量的增加,衍射峰强度增强,晶粒尺寸增大,材料的颗粒及孔径先减小后增大。电化学测试表明Na_3(V_(1-2y/3)-Mn_y)_2(PO_4)_2F_3(y=0.05)拥有最优的电化学性能,该样品在0.1和1C倍率下的首次放电比容量分别为116.7和61.9mAh/g,循环50次后的放电比容量仍高达112.1和60.8mAh/g。  相似文献   

19.
刘人敏 《材料导报》2001,15(2):30-30
本项目研究锂离子电池新型正极材料LiMn_2O_4、复合石墨负极材料和塑性锂离子电池。自行设计了功率为0~1kW、主频为2.45GHz、腔体模式为TE_(103)型单模腔微波场,开发了微波合成LiMn_2O_4的新技术,合成时间缩短至15min;材料的比容量大于120mAh/g,以它为正极的18650型锂离子电池容量大于1250mAh,0.5C(650mA)充放电300次后容量保持70%左右;此外本项目还研究了采用高温固相反应法改善LiMn_1O_4循环性能的新技术。系统地研究了国产石墨碳材料嵌脱锂的特性,它们的容量一般小于300mAh/g,存在充放电效率低、循环性能差等问题;本项目开发了对国产石墨材料的改性技术,极大地提高了材  相似文献   

20.
对掺杂镍(Ni)和钴(Co)固体物质锰基锂正极材料进行研究,采用高温固相合成法制得锰基锂正极材料Li_(1.2)Ni_(0.13)Co_(0.13)Mn_(0.54)O_2,采用X射线衍射仪分析该合成材料在不同恒定温度煅烧下的晶体结构和材料表征,采用高精度电池测试仪测试电池的电化学特性。测试结果表明,锰基锂正极材料Li_(1.2)Ni_(0.13)Co_(0.13)Mn_(0.54)O_2为六方晶系,α-NaFeO2结构,R3m空间群,结晶程度极高,结构稳定性很好。锰基锂正极材料Li_(1.2)Ni_(0.13)Co_(0.13)Mn_(0.54)O_2的充电平台和放电平台分别为4.2V和3.2V,在0.1C倍率下,充电比容量高达约370mAh/g,放电比容量高达约325mAh/g,在不同倍率下经过10次循环后其比容量保持稳定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号