首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Impinging flame jets are widely used in applications where high heat-transfer rates are needed, for instance in the glass industry. During the heating process of glass products, internal thermal stresses develop in the material due to temperature gradients. In order to avoid excessive thermal gradients as well as overheating of the hot spots, it is important to know and control the temperature distribution inside a heated glass product. Therefore, it is advantageous to know the relation describing the convective heat–flux distribution at the heated side of a glass product. In a previous work, we presented a heat–flux relation applicable for the hot spot of the target [M.J. Remie, G. Särner, M.F.G. Cremers, A. Omrane, K.R.A.M. Schreel, M. Aldén, L.P.H. de Goey, Extended heat-transfer relation for an impinging laminar flame jet to a flat plate, Int. J. Heat Mass Transfer, in press]. In this paper, we present an extension of this relation, which is applicable for larger radial distances from the hot spot.  相似文献   

2.
When a gas expands through a convergent nozzle in which the ratio of the ambient to the stagnation pressures is higher than that of the critical one, the issuing jet from the nozzle is under-expanded. If a flat plate is placed normal to the jet at a certain distance from the nozzle, a detached shock wave is formed at a region between the nozzle exit and the plate. In general, supersonic moist air jet technologies with non-equilibrium condensation are very often applied to industrial manufacturing processes. In spite of the importance in major characteristics of the supersonic moist air jets impinging to a solid body, its qualitative characteristics are not known satisfactorily. In the present study, the effect of the non-equilibrium condensation on the under-expanded air jet impinging on a vertical flat plate is investigated numerically in the case with non-equilibrium condensation, frequency of oscillation for the flow field becomes larger than that without the non-equilibrium condensation, and amplitudes of static pressure become small compared with those of dry air. Furthermore, the numerical results are compared with experimental ones.  相似文献   

3.
An experimental study was performed to determine the effects of inclination of an impinging two dimensional slot jet on the heat transfer from a flat plate. Local Nusselt numbers and surface pressure distributions were determined depending on inclination angle, jet-to-plate spacing and Reynolds number. The results showed that the location of maximum heat transfer was mainly due to the angle of inclination. As the inclination angle increases, the location of the maximum heat transfer shifts towards the uphill side of the plate and the value of the maximum Nusselt number gradually increases at lower jet-to-plate spacings.  相似文献   

4.
The structure of the flow field and its effect on the heat transfer characteristics of a jet array system impinging on a moving heated plate are investigated numerically for Reynolds numbers between 100 and 400 and for steady state conditions. An array consisting of 24 square jets (3 rows × 8 columns) impinging on a moving heated flat surface is considered as a representative pattern.The simulations have been carried out for jet-to-jet spacing in the range 2D–5D and for nozzle exit to plate distance of 0.25D, where D is the jet width. The velocity ratios of the moving heated plat to the jet velocity (Rm = up/uj) used are in the range 0.25–1.0. The obtained results were compared with published data for the case of fixed heated plate (Rm = 0.0). The results show that the streamwise profile of the Nusselt number exhibit strong periodic oscillations, spatially. The amplitude of the periodic oscillations of the Nusselt number is attenuated as one proceeds in the downstream direction. For such small nozzle-to-plate spacing used, the results show that the ratio Rm has no effect on the oscillations of Nusselt number.  相似文献   

5.
This study investigates hydrodynamic characteristics of a slot jet flow impinging on a concave surface experimentally and numerically. Six different concave plates with varying surface curvature and a flat plate are used. Air is used as the impinging coolant. In the experimental work, the slot nozzle used was specially designed with a sixth degree polynomial in order to provide a uniform velocity profile at its exit. The experiments were carried out for the jet Reynolds numbers in the range of 3000 < Re < 12500, the dimensionless nozzle-to-surface distance range of 1 ≤ H/W ≤ 14 for dimensionless value of the curvature of impinging surfaces in the range of R/L = 0.5, 0.5125, 0.566, 0.725, and 1.3. The pressure coefficient, Cp, for each test case was obtained across dimensionless arc length, s/W. Numerical computations were performed by using the k-ε turbulence model with enhanced wall functions for the concave plate with R/L = 0.725 and for the flat plate. The numerical results showed a reasonable agreement with the experimental data.  相似文献   

6.
The entrainment of the ambient air into a turbulent argon plasma jet is studied numerically using a turbulence-enhanced combined-diffusion-coefficient method. Namely, the Navier-Stokes equations and two-equation turbulence model coupled with the turbulence-enhanced combined-diffusion-coefficient approach are employed to predict the turbulent plasma jet characteristics including the evolution of air mole fraction along the plasma jet in air surroundings. Although complicated gas species always exist in the plasma jet due to rather high gas temperatures being involved, it is shown that the entrainment of ambient air into the turbulent argon plasma jet can still be treated simply by the combined turbulent and molecular diffusion between only two different gases (argon and air). Good agreement between the predicted results with corresponding experimental data reported by Fincke et al. [Int. J. Heat Mass Transfer 46 (22) (2003) 4201] demonstrates the applicability of the present modeling approach.  相似文献   

7.
The computational study of heat transfer characteristics over a flat surface under the impingement of an air jet is the most advanced scheme in the research field of convective heat transfer technology. This research aims to construct the semiempirical relations for predicting the magnitude of local Nusselt number (Nu) against the various impinging and target surface parameters. The impinging parameter includes Reynolds number (Re) and nozzle‐target spacing (Z/d), while the target surface parameter represents the Prandtl number (Pr) and nondimensional geometric thickness (t/d) of the target surface. The graphical representation of Nu versus r/d for different Pr and t/d justifies the saturation in the Nusselt profile beyond a critical value. The critical limit of Pr × t/d, reported in this study, rounds to 0.012. Hence, two sets of empirical relations for Pr × t/d < 0.012 and Pr × t/d > 0.012 must be defined. The semiempirical relations for Pr × t/d > 0.012 is only a function of impinging parameters, since the variation in Pr and t/d does not affect the Nu profile beyond this range. This work takes an initiative in reporting the semiempirical power law relations, which represent the local Nu magnitude within the range of Pr × t/d < 0.012. The reported empirical relations are the functions of Pr, t/d, Z/d, Re, and r/d.  相似文献   

8.
9.
Experiments were carried out to eliminate the screech tone generated from a supersonic jet. Compressed air was passed through a circular convergent nozzle preceded by a straight tube of same diameter. In order to reduce the jet screech a spherical reflector was used and placed at the nozzle exit. The placement of the spherical reflector at the nozzle exit controlled the location of the image source as well as minimized the sound pressure at the nozzle exit. The weak sound pressure did not excite the unstable disturbance at the exit. Thus the loop of the feedback mechanism could not be accomplished and the jet screech was eliminated. The technique of screech reduction with a flat plate was also examined and compared with the present method. A good and effective performance in canceling the screech component by the new method was found by the investigation. Experimental results indicate that the new system suppresses not only the screech tones but also the broadband noise components and reduces the overal  相似文献   

10.
In this study, an inverse algorithm based on the conjugate gradient method and the discrepancy principle is applied to estimate the unknown space-and time-dependent heat flux at the surface of an initially hot cylinder cooled by a laminar confined slot impinging jet from the knowledge of temperature measurements taken on the cylinder’s surface. It is assumed that no prior information is available on the functional form of the unknown heat flux; hence the procedure is classified as the function estimation in inverse calculation. The temperature data obtained from the direct problem are used to simulate the temperature measurements, and the effect of the errors in these measurements upon the precision of the estimated results is also considered. The results show that an excellent estimation on the space-and time-dependent heat flux can be obtained even the distributions of thermal properties inside the cylinder is unknown.  相似文献   

11.
The flow field around a circular cylinder elastically suspended with a cantilever‐type plate spring in the jet impingement region was visualized to investigate the mechanism of the impingement heat transfer. The impingement distance H was kept constant at 3 or 5 times as large as the jet slot width, h = 15 mm.The Reynolds number was fixed at 10,000, or 5000 in the case of flow visualization. The self‐induced periodic swing motion of the cylinder across the jet axis was caused by the interaction between the jet and the elastically suspended cylinder. It was found that this swing motion has direct effects on the flow and heat transfer characteristics of the stagnation region. The ensemble‐averaged values of the flow velocity and its fluctuations depended on the cylinder diameter and the impingement distance. The local Nusselt number in the case of H/h = 3 with the oscillating cylinder of the smallest diameter D = 4 mm was increased to 1.15 times as large as that without the cylinder. The interesting patterns of the intermittency function defined with a certain threshold level of turbulence intensity were obtained under the above experimental conditions. © 2001 Scripta Technica, Heat Trans Asian Res, 30(4): 313–330, 2001  相似文献   

12.
The influence of nozzle selection and consequent impact of momentum thickness is rarely investigated in heated horizontal plane jets. In the present work an experimental study is performed using a two dimensional converging nozzle and then by attaching a channel to the nozzle with air issued at a moderate Reynolds number of 4000 and at an inlet temperature of 60 °C. A hotwire anemometer is used to measure velocity and temperature fields. The ratio of heat to momentum transport is 1.33 for nozzle jets and 1.4 for channel jets. Half widths based on mean excess temperature and velocity is higher for channel jets. The influence of buoyancy is negligible for the present case. But the spread of temperature as a scalar is important in the transport process.  相似文献   

13.
We present a new method of solving the three-dimensional inverse heat conduction (3D IHC) problem with the special geometry of a thin sheet. The 3D heat equation is first simplified to a 1D equation through modal expansions. Through a Laplace transform, algebraic relationships are obtained that express the front surface temperature and heat flux in terms of those same thermal quantities on the back surface. We expand the transfer functions as infinite products of simple polynomials using the Hadamard Factorization Theorem. The straightforward inverse Laplace transforms of these simple polynomials lead to relationships for each mode in the time domain. The time domain operations are implemented through iterative procedures to calculate the front surface quantities from the data on the back surface. The iterative procedures require numerical differentiation of noisy sensor data, which is accomplished by the Savitzky–Golay method. To handle the case when part of the back surface is not accessible to sensors, we used the least squares fit to obtain the modal temperature from the sensor data. The results from the proposed method are compared with an analytical solution and with the numerical solution of a 3D heat conduction problem with a constant net heat flux distribution on the front surface.  相似文献   

14.
A numerical finite-difference approach was used to compute the steady and unsteady flow and heat transfer due to a confined two-dimensional slot jet impinging on an isothermal plate. The jet Reynolds number was varied from Re=250 to 750 for a Prandtl number of 0.7 and a fixed jet-to-plate spacing of H/W=5. The flow was found to become unsteady at a Reynolds number between 585 and 610. In the steady regime, the stagnation Nusselt number increased monotonically with Reynolds number, and the distribution of heat transfer in the wall jet region was influenced by flow separation caused by re-entrainment of the spent flow back into the jet. At a supercritical Reynolds number of 750 the flow was unsteady and the net effect in the time mean was that the area-averaged heat transfer coefficient was higher compared to what it would have been in the absence of jet unsteady effects. The unsteady jet exhibited a dominant frequency that corresponded to the formation of shear layer vortices at the jet exit. Asymmetry in the formation of the vortex sheets caused deformation or buckling of the jet that induced a low-frequency lateral jet “flapping” instability. The heat transfer responds to both effects and leads to a broadening of the cooled area.  相似文献   

15.
16.
This paper focuses on the application of fuzzy logic (FL) to predict the forced convection heat transfer from V‐shaped plate internal surfaces exposed to an air impingement slot jet. The aim of the present paper is to consider the effects of the angle of a V‐shaped plate (Φ), slot‐to‐plate spacing ratio (Z/W), and Reynolds number (Re) variation on average heat transfer from the V‐shaped plate internal surfaces. The data used for developing the FL structure was obtained experimentally by a Mach‐Zehnder interferometer. The proposed FL was developed using MATLAB functions. It was observed that the average Nusselt number will be decreased with an increase in jet spacing and be increased with an increase in Reynolds number and angle of V‐shaped plate. Moreover, it is also shown that fuzzy logic is a powerful technique to use for predicting heat transfer due to its low error rate. The average error of the fuzzy predictions compared with experimental data was found to be 0.33% for this study. © 2012 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21009  相似文献   

17.
A numerical simulation has been performed to clarify the effects of turbulence in a liquid on the deformation of the liquid jet surface into an air flow. The turbulences in the liquid jet were simulated by the Rankin vortices, and the liquid jet surface was tracked numerically by the volume of fluid method. By numerical simulations, the onset of the protrusions on the liquid jet surface is caused by the vortices in the liquid, and the surrounding air flow plays an important role in the amplification of the protrusions. The amplification rate of the trough displacement is proportional to the air‐to‐liquid velocity ratio. At large imposed vortex intensities, the trough displacement increases with the vortex intensity. On the other hand, at small imposed vortex intensities, the amplification of the trough displacement is also affected by factors other than vortex intensity. © 2001 Scripta Technica, Heat Trans Asian Res, 30(6): 473–484, 2001  相似文献   

18.
Spontaneous ignition of a pressurized hydrogen release has important implications in the risk assessment of hydrogen installations and design of safety measures. In real accident scenarios, an obstacle may be present close to the release point. Relatively little is known about the effect of such an obstacle on the salient features of highly under-expanded hydrogen jets and its spontaneous ignition.In the present study, the effect of a thin flat obstacle on the spontaneous ignition of a direct pressurized hydrogen release is investigated using a 5th-order WENO scheme and detailed chemistry. The numerical study has revealed that, for the conditions studied, the presence of the obstacle plays an important role in quenching the flame following spontaneous ignition for the release conditions considered.  相似文献   

19.
The influence of the size of the hot gas volume on the temperature decrease due to radiative losses above a burner with a flat porous inert surface has been studied using a 1D and a 2D axisymmetric model. Based on the results of simulations with these models and stimulated by a formulation based on the weighted sum of gray gases model, a simple expression accounting for the effect of the hot gas volume size in 1D simulations is proposed. This model was validated with temperature measurements above a few burners with different sizes and the agreement is satisfactory. It is shown that the optically thin limit is applicable only for very small burners. The uncertainty of the optically thin limit grows with the diameter d of the burner and is already 10% for d=1 cm. On the other hand, a 1D model including self-adsorption is valid only for very large burners. For most applications, detailed computations of the radiative transfer should be applied. For fast computations it is advised that the above-mentioned simple model be used to account for emission and self-absorption.  相似文献   

20.
An analysis is presented to investigate the influences of viscous dissipation and Joule heating in the entire thermo-fluid dynamic field resulting from the coupling of bouncy forced flow with conduction along one side of a heated flat plate of thickness ‘b’. The governing equations are transformed into dimensionless non-similar equations by using set of suitable transformations and solved numerically by the finite difference method along with Newton's linearization approximation. Numerical results for the velocity profiles, temperature profiles, skin friction coefficient and the surface temperature distributions are shown both on graphs and in tabular form for different values of the parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号