首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Most eukaryotic genomes include a substantial repeat-rich fraction termed heterochromatin, which is concentrated in centric and telomeric regions. The repetitive nature of heterochromatic sequence makes it difficult to assemble and analyze. To better understand the heterochromatic component of the Drosophila melanogaster genome, we characterized and annotated portions of a whole-genome shotgun sequence assembly.

Results

WGS3, an improved whole-genome shotgun assembly, includes 20.7 Mb of draft-quality sequence not represented in the Release 3 sequence spanning the euchromatin. We annotated this sequence using the methods employed in the re-annotation of the Release 3 euchromatic sequence. This analysis predicted 297 protein-coding genes and six non-protein-coding genes, including known heterochromatic genes, and regions of similarity to known transposable elements. Bacterial artificial chromosome (BAC)-based fluorescence in situ hybridization analysis was used to correlate the genomic sequence with the cytogenetic map in order to refine the genomic definition of the centric heterochromatin; on the basis of our cytological definition, the annotated Release 3 euchromatic sequence extends into the centric heterochromatin on each chromosome arm.

Conclusions

Whole-genome shotgun assembly produced a reliable draft-quality sequence of a significant part of the Drosophila heterochromatin. Annotation of this sequence defined the intron-exon structures of 30 known protein-coding genes and 267 protein-coding gene models. The cytogenetic mapping suggests that an additional 150 predicted genes are located in heterochromatin at the base of the Release 3 euchromatic sequence. Our analysis suggests strategies for improving the sequence and annotation of the heterochromatic portions of the Drosophila and other complex genomes.  相似文献   

2.
3.
4.

Background

The Drosophila melanogaster genome was the first metazoan genome to have been sequenced by the whole-genome shotgun (WGS) method. Two issues relating to this achievement were widely debated in the genomics community: how correct is the sequence with respect to base-pair (bp) accuracy and frequency of assembly errors? And, how difficult is it to bring a WGS sequence to the accepted standard for finished sequence? We are now in a position to answer these questions.

Results

Our finishing process was designed to close gaps, improve sequence quality and validate the assembly. Sequence traces derived from the WGS and draft sequencing of individual bacterial artificial chromosomes (BACs) were assembled into BAC-sized segments. These segments were brought to high quality, and then joined to constitute the sequence of each chromosome arm. Overall assembly was verified by comparison to a physical map of fingerprinted BAC clones. In the current version of the 116.9 Mb euchromatic genome, called Release 3, the six euchromatic chromosome arms are represented by 13 scaffolds with a total of 37 sequence gaps. We compared Release 3 to Release 2; in autosomal regions of unique sequence, the error rate of Release 2 was one in 20,000 bp.

Conclusions

The WGS strategy can efficiently produce a high-quality sequence of a metazoan genome while generating the reagents required for sequence finishing. However, the initial method of repeat assembly was flawed. The sequence we report here, Release 3, is a reliable resource for molecular genetic experimentation and computational analysis.  相似文献   

5.

Background

It is widely accepted that comparative sequence data can aid the functional annotation of genome sequences; however, the most informative species and features of genome evolution for comparison remain to be determined.

Results

We analyzed conservation in eight genomic regions (apterous, even-skipped, fushi tarazu, twist, and Rhodopsins 1, 2, 3 and 4) from four Drosophila species (D. erecta, D. pseudoobscura, D. willistoni, and D. littoralis) covering more than 500 kb of the D. melanogaster genome. All D. melanogaster genes (and 78-82% of coding exons) identified in divergent species such as D. pseudoobscura show evidence of functional constraint. Addition of a third species can reveal functional constraint in otherwise non-significant pairwise exon comparisons. Microsynteny is largely conserved, with rearrangement breakpoints, novel transposable element insertions, and gene transpositions occurring in similar numbers. Rates of amino-acid substitution are higher in uncharacterized genes relative to genes that have previously been studied. Conserved non-coding sequences (CNCSs) tend to be spatially clustered with conserved spacing between CNCSs, and clusters of CNCSs can be used to predict enhancer sequences.

Conclusions

Our results provide the basis for choosing species whose genome sequences would be most useful in aiding the functional annotation of coding and cis-regulatory sequences in Drosophila. Furthermore, this work shows how decoding the spatial organization of conserved sequences, such as the clustering of CNCSs, can complement efforts to annotate eukaryotic genomes on the basis of sequence conservation alone.  相似文献   

6.

Background

Chromosomal deletions are used extensively in Drosophila melanogaster genetics research. Deletion mapping is the primary method used for fine-scale gene localization. Effective and efficient deletion mapping requires both extensive genomic coverage and a high density of molecularly defined breakpoints across the genome.

Results

A large-scale resource development project at the Bloomington Drosophila Stock Center has improved the choice of deletions beyond that provided by previous projects. FLP-mediated recombination between FRT-bearing transposon insertions was used to generate deletions, because it is efficient and provides single-nucleotide resolution in planning deletion screens. The 793 deletions generated pushed coverage of the euchromatic genome to 98.4%. Gaps in coverage contain haplolethal and haplosterile genes, but the sizes of these gaps were minimized by flanking these genes as closely as possible with deletions. In improving coverage, a complete inventory of haplolethal and haplosterile genes was generated and extensive information on other haploinsufficient genes was compiled. To aid mapping experiments, a subset of deletions was organized into a Deficiency Kit to provide maximal coverage efficiently. To improve the resolution of deletion mapping, screens were planned to distribute deletion breakpoints evenly across the genome. The median chromosomal interval between breakpoints now contains only nine genes and 377 intervals contain only single genes.

Conclusions

Drosophila melanogaster now has the most extensive genomic deletion coverage and breakpoint subdivision as well as the most comprehensive inventory of haploinsufficient genes of any multicellular organism. The improved selection of chromosomal deletion strains will be useful to nearly all Drosophila researchers.  相似文献   

7.
8.
9.
10.

Background

Chromosome four of Drosophila melanogaster, known as the dot chromosome, is largely heterochromatic, as shown by immunofluorescent staining with antibodies to heterochromatin protein 1 (HP1) and histone H3K9me. In contrast, the absence of HP1 and H3K9me from the dot chromosome in D. virilis suggests that this region is euchromatic. D. virilis diverged from D. melanogaster 40 to 60 million years ago.

Results

Here we describe finished sequencing and analysis of 11 fosmids hybridizing to the dot chromosome of D. virilis (372,650 base-pairs) and seven fosmids from major euchromatic chromosome arms (273,110 base-pairs). Most genes from the dot chromosome of D. melanogaster remain on the dot chromosome in D. virilis, but many inversions have occurred. The dot chromosomes of both species are similar to the major chromosome arms in gene density and coding density, but the dot chromosome genes of both species have larger introns. The D. virilis dot chromosome fosmids have a high repeat density (22.8%), similar to homologous regions of D. melanogaster (26.5%). There are, however, major differences in the representation of repetitive elements. Remnants of DNA transposons make up only 6.3% of the D. virilis dot chromosome fosmids, but 18.4% of the homologous regions from D. melanogaster; DINE-1 and 1360 elements are particularly enriched in D. melanogaster. Euchromatic domains on the major chromosomes in both species have very few DNA transposons (less than 0.4 %).

Conclusion

Combining these results with recent findings about RNAi, we suggest that specific repetitive elements, as well as density, play a role in determining higher-order chromatin packaging.  相似文献   

11.
12.
13.

Background

Miniature inverted-repeat transposable elements (MITEs) are non-autonomous DNA-mediated transposable elements (TEs) derived from autonomous TEs. Unlike in many plants or animals, MITEs and other types of DNA-mediated TEs were previously thought to be either rare or absent in Drosophila. Most other TE families in Drosophila exist at low or intermediate copy number (around < 100 per genome).

Results

We present evidence here that the dispersed repeat Drosophila interspersed element 1 (DINE-1; also named INE-1 and DNAREP1) is a highly abundant DNA-mediated TE containing inverted repeats found in all 12 sequenced Drosophila genomes. All DINE-1s share a similar sequence structure, but are more homogeneous within species than they are among species. The inferred phylogenetic relationship of the DINE-1 consensus sequence from each species is generally consistent with the known species phylogeny, suggesting vertical transmission as the major mechanism for DINE-1 propagation. Exceptions observed in D. willistoni and D. ananassae could be due to either horizontal transfer or reactivation of ancestral copies. Our analysis of pairwise percentage identity of DINE-1 copies within species suggests that the transpositional activity of DINE-1 is extremely dynamic, with some lineages showing evidence for recent transpositional bursts and other lineages appearing to have silenced their DINE-1s for long periods of time. We also find that all species have many DINE-1 insertions in introns and adjacent to protein-coding genes. Finally, we discuss our results in light of a recent proposal that DINE-1s belong to the Helitron family of TEs.

Conclusion

We find that all 12 Drosophila species with whole-genome sequence contain the high copy element DINE-1. Although all DINE-1s share a similar structure, species-specific variation in the distribution of average pairwise divergence suggests that DINE-1 has gone through multiple independent cycles of activation and suppression. DINE-1 also has had a significant impact on gene structure evolution.  相似文献   

14.
15.
A retrotransposon of the Mag family was found in the Drosophila simulans genome for the first time. We also identified novel transposable elements representing the Mag family in seven Drosophila species. The high similarity between the 3’ and 5’ long terminal repeats in the found copies of transposable elements indicates that their retrotransposition has occurred relatively recently. Thus, the Mag family of retrotransposons is quite common for the genus Drosophila.  相似文献   

16.

Background

Drosophila mojavensishas been a model system for genetic studies of ecological adaptation and speciation. However, despite its use for over half a century, no linkage map has been produced for this species or its close relatives.

Results

We have developed and mapped 90 microsatellites in D. mojavensis, and we present a detailed recombinational linkage map of 34 of these microsatellites. A slight excess of repetitive sequence was observed on the X-chromosome relative to the autosomes, and the linkage groups have a greater recombinational length than the homologous D. melanogaster chromosome arms. We also confirmed the conservation of Muller's elements in 23 sequences between D. melanogaster and D. mojavensis.

Conclusions

The microsatellite primer sequences and localizations are presented here and made available to the public. This map will facilitate future quantitative trait locus mapping studies of phenotypes involved in adaptation or reproductive isolation using this species.  相似文献   

17.

Background

Paracoccidioides brasiliensis (Eukaryota, Fungi, Ascomycota) is a thermodimorphic fungus, the etiological agent of paracoccidioidomycosis, the most important systemic mycoses in Latin America. Three isolates corresponding to distinct phylogenetic lineages of the Paracoccidioides species complex had their genomes sequenced. In this study the identification and characterization of class II transposable elements in the genomes of these fungi was carried out.

Results

A genomic survey for DNA transposons in the sequence assemblies of Paracoccidioides, a genus recently proposed to encompass species P. brasiliensis (harboring phylogenetic lineages S1, PS2, PS3) and P. lutzii (Pb01-like isolates), has been completed. Eight new Tc1/mariner families, referred to as Trem (Tr ansposable e lement m ariner), labeled A through H were identified. Elements from each family have 65-80% sequence similarity with other Tc1/mariner elements. They are flanked by 2-bp TA target site duplications and different termini. Encoded DDD-transposases, some of which have complete ORFs, indicated that they could be functionally active. The distribution of Trem elements varied between the genomic sequences characterized as belonging to P. brasiliensis (S1 and PS2) and P. lutzii. TremC and H elements would have been present in a hypothetical ancestor common to P. brasiliensis and P. lutzii, while TremA, B and F elements were either acquired by P. brasiliensis or lost by P. lutzii after speciation. Although TremD and TremE share about 70% similarity, they are specific to P. brasiliensis and P. lutzii, respectively. This suggests that these elements could either have been present in a hypothetical common ancestor and have evolved divergently after the split between P. brasiliensis and P. Lutzii, or have been independently acquired by horizontal transfer.

Conclusions

New families of Tc1/mariner DNA transposons in the genomic assemblies of the Paracoccidioides species complex are described. Families were distinguished based on significant BLAST identities between transposases and/or TIRs. The expansion of Trem in a putative ancestor common to the species P. brasiliensis and P. lutzii would have given origin to TremC and TremH, while other elements could have been acquired or lost after speciation had occurred. The results may contribute to our understanding of the organization and architecture of genomes in the genus Paracoccidioides.  相似文献   

18.

Background

Introns comprise a large fraction of eukaryotic genomes, yet little is known about their functional significance. Regulatory elements have been mapped to some introns, though these are believed to account for only a small fraction of genome wide intronic DNA. No consistent patterns have emerged from studies that have investigated general levels of evolutionary constraint in introns.

Results

We examine the relationship between intron length and levels of evolutionary constraint by analyzing inter-specific divergence at 225 intron fragments in Drosophila melanogaster and Drosophila simulans, sampled from a broad distribution of intron lengths. We document a strongly negative correlation between intron length and divergence. Interestingly, we also find that divergence in introns is negatively correlated with GC content. This relationship does not account for the correlation between intron length and divergence, however, and may simply reflect local variation in mutational rates or biases.

Conclusion

Short introns make up only a small fraction of total intronic DNA in the genome. Our finding that long introns evolve more slowly than average implies that, while the majority of introns in the Drosophila genome may experience little or no selective constraint, most intronic DNA in the genome is likely to be evolving under considerable constraint. Our results suggest that functional elements may be ubiquitous within longer introns and that these introns may have a more general role in regulating gene expression than previously appreciated. Our finding that GC content and divergence are negatively correlated in introns has important implications for the interpretation of the correlation between divergence and levels of codon bias observed in Drosophila.  相似文献   

19.
20.

Background

In eukaryotic cells, oxidative phosphorylation (OXPHOS) uses the products of both nuclear and mitochondrial genes to generate cellular ATP. Interspecies comparative analysis of these genes, which appear to be under strong functional constraints, may shed light on the evolutionary mechanisms that act on a set of genes correlated by function and subcellular localization of their products.

Results

We have identified and annotated the Drosophila melanogaster, D. pseudoobscura and Anopheles gambiae orthologs of 78 nuclear genes encoding mitochondrial proteins involved in oxidative phosphorylation by a comparative analysis of their genomic sequences and organization. We have also identified 47 genes in these three dipteran species each of which shares significant sequence homology with one of the above-mentioned OXPHOS orthologs, and which are likely to have originated by duplication during evolution. Gene structure and intron length are essentially conserved in the three species, although gain or loss of introns is common in A. gambiae. In most tissues of D. melanogaster and A. gambiae the expression level of the duplicate gene is much lower than that of the original gene, and in D. melanogaster at least, its expression is almost always strongly testis-biased, in contrast to the soma-biased expression of the parent gene.

Conclusions

Quickly achieving an expression pattern different from the parent genes may be required for new OXPHOS gene duplicates to be maintained in the genome. This may be a general evolutionary mechanism for originating phenotypic changes that could lead to species differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号