首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 495 毫秒
1.
The reaction of triphenyl phosphite ozonide with various types of diazo compounds results in their oxidation, which is accomplished by singlet oxygen (1O2) evolved during thermal decomposition of the ozonide. A decrease in the ionization potential of the substrate results in an increase in the overall rate constant of quenching of1O2. In the case of 9-diazofluorene, the main channel of1O2 quenching is physical quenching.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1567–1571, September, 1994.The work was carried out with the financial support of the Russian Foundation for Basic Research (Project No. 93-03-5231).  相似文献   

2.
Rate constants of singlet oxygen quenching by glycyrrhetic acid, glycyrrhizic acid, isoliquiritigenin, licurazide,d-glucose, andl-arabinose were determined. An increase in the quenching rate constants by more than an order of magnitude is observed on going from aglycone to the corresponding glycoside.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 57–59, January, 1996.  相似文献   

3.
Abstract— The aerobic dye-sensitized photooxygenation of monohydric phenols proceeds by way of singlet oxygen under the conditions studied. Various phenols give different proportions of reaction with and quenching of singlet oxygen. Para-substituted 2,6-di-t-butylphenols show a linear correlation between the log of the total rate of singlet oxygen removal and their halfwave oxidation potentials; the same correlation is given for certain phenol methyl ethers. A Hammett plot using s?+ gives ρ - 1.72 ± 0.12, consistent with development of some charge in the quenching step. Reaction of photo-chemically generated singlet oxygen with 2,4,6-triphenylphenol gives 2,4,6-triphenylphenoxy radical as an intermediate in singlet oxygen quenching, although no overall reaction occurs. Kinetic analysis indicates that the radical is derived exclusively from the interaction of 2,4,6-triphenylphenol with singlet oxygen. A charge-transfer mechanism for quenching of singlet oxygen by phenols is proposed.  相似文献   

4.
Photo-isomerization and anti-oxidation of carotenoids have been studied for many years be-cause of their diverse roles in photobiology, photochemistry and photomedicine[1—6]. The experi-mental works revealed that the changes in the geometry between S0 (the ground state) and T1 (the first triplet state) states are very important for the two processes. Meanwhile, theoretical studies have also been carried out to investigate these processes. The polyenes have usually been used as the models for…  相似文献   

5.
Singlet oxygen is known to cause oxidative stress in cells, leading to severe damage (e.g., lipid peroxidation, membrane degradation, mutagenic alterations to DNA, protein misfunctionality). Recently, pyridoxine has been discovered to be capable of quenching singlet oxygen, however, the mechanism of this reaction remains essentially unknown. In this work, we have investigated four sets of reactions: 1) 1,3-addition to a double bond connected to a hydrogen-carrying group, resulting in the formation of allylic hydroperoxides; 2) [pi2+pi2] 1,2-cycloaddition to an isolated double bond, resulting in the formation of 1,2-peroxides; 3) 1,4-cycloaddition to a system containing at least two conjugated double bonds, resulting in the formation of the so-called 1,4-peroxides; 4) 1,4-addition to phenols and naphthols with the formation of hydroperoxide ketones. Thermodynamically, reaction 4 and the 6(9), 3(8), and 5(8) cases of reaction 1 are the most exergonic ones, with energies ranging from -16 to -18 kcal mol(-1). Furthermore, reaction 4 shows the lowest barrier through the reaction path, and is predicted to be the preferred mechanism for the pyridoxine + singlet-oxygen reaction, which is in agreement with previous experimental results.  相似文献   

6.
The role of the mobile C‐terminal extension present in Rhodobacter capsulatus ferredoxin–NADP(H) reductase (RcFPR) was evaluated using steady‐state and dynamic spectroscopies for both intrinsic Trp and FAD in a series of mutants in the absence of NADP(H). Deletion of the six C‐terminal amino acids beyond Ala266 was combined with the replacement A266Y to emulate the structure of plastidic reductases. Our results show that these modifications of the wild‐type RcFPR produce subtle global conformational changes, but strongly reduce the local rigidity of the FAD‐binding pocket, exposing the isoalloxazine ring to the solvent. Thus, the ultrafast charge‐transfer quenching of 1FAD* by the conserved Tyr66 residue was absent in the mutant series, producing enhancement of the excited singlet‐ and triplet‐state properties of FAD. This work highlights the delicate balance of the specific interactions between FAD and the surrounding amino acids, and how the functionality and/or photostability of redox flavoproteins can be modified.  相似文献   

7.
The presence of a chalcogen atom at the ortho-position of phenols enhances their radical chain-breaking activity. Here, a copper(I)-catalyzed reaction of 2,6-dibromo- and 2,6-diiodophenols with diorganodiselenides has been studied for the introduction of two organoselenium substituents at both ortho-positions of the phenolic radical chain-breaking antioxidants, which afforded 2,6-diorganoseleno-substituted phenols in 80–92% yields having electron-donating CH3, and electron-withdrawing CN and CHO functionalities. Additionally, 2,6-diiodophenols with electron-withdrawing CHO and CN groups also afforded novel 5,5′-selenobis(4-hydroxy-3-(phenylselanyl)benzaldehyde) and 5,5′-selenobis(4-hydroxy-3-(phenylselanyl)benzonitrile) consisting of three selenium and two phenolic moieties along with 2,6-diorganoseleno-substituted phenols has been synthesized. The electron-withdrawing CHO group has been reduced by sodium borohydride to the electron-donating alcohol CH2OH group, which is desirable for efficient radical quenching activity of phenols. The developed copper-catalyzed reaction conditions enable the installation of two-arylselenium group ortho to phenolic radical chain-breaking antioxidants, which may not be possible by conventional organolithium-bromine exchange methods due to the sluggish reactivity of trianions (dicarba and phenoxide anion), which are generated by the reaction of organolithium with 2,6-dibromophenols, with diorganodiselenides. The antioxidant activities of the synthesized bis and tris selenophenols have been accessed by DPPH, thiol peroxides, and singlet oxygen quenching assay. The radical quenching antioxidant activity has been studied for the synthesized compounds by 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. The bis-selenophenols show comparable radical deactivating activity, while tris seleno-bisphenols show higher radical deactivating activity than α-tocopherol. Furthermore, the tris seleno-bisphenol shows comparable peroxide decomposing activity with ebselen molecules.  相似文献   

8.
Introduction Poly(1,4-phenylene vinylene) (PPV) has been the subject of explosive interest in these years. It has poten-tial applications in light-emitting diode, light emitting electrochemical cell and plastic laser.1-4 To improve its solubility and optical properties substituents are intro-duced to the PPV main chain. Poly[2-methoxy-5-(2'-ethylhexoxy)-p-phenylene vinylene] (MEH-PPV) is one of derivatives with alkoxy groups on phenyl rings. It exhibits superior solubility in organic sol…  相似文献   

9.
研究了多种不同过渡金属络合物对单重态氧的猝灭问题。结果表明过渡金属络合物猝灭单重态氧的能力主要和络合物分子的几何构型有关。能形成平面四方形结构的络合物由于中心金属原子易于和1O2分子相接近因而具有强的猝灭1O2的能力,反之形成四面体形结构的络合物则猝灭能力减弱。  相似文献   

10.
The fluorescence quenching of singlet-excited 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) by 22 phenols and 12 alkylbenzenes has been investigated. Quenching rate constants in acetonitrile are in the range of 10(8)-10(9) M(-1)s(-1) for phenols and 10(5)-10(6) M(-1)s(-1) for alkylbenzenes. In contrast to the quenching of triplet-excited benzophenone, no exciplexes are involved, so that a pure hydrogen atom transfer is proposed as quenching mechanism. This is supported by (1) pronounced deuterium isotope effects (kH/kD ca 4-6), which were observed for phenols and alkylbenzenes, and (2) a strongly endergonic thermodynamics for charge transfer processes (electron transfer, exciplex formation). In the case of phenols, linear free energy relationships applied, which led to a reaction constant of rho = -0.40, suggesting a lower electrophilicity of singlet-excited DBO than that of triplet-excited ketones and alkoxyl radicals. The reactivity of singlet-excited DBO exposes statistical, steric, polar and stereoelectronic effects on the hydrogen atom abstraction process in the absence of complications because of competitive exciplex formation.  相似文献   

11.
The synthesis of arylamines from renewable resources under mild reaction conditions is highly desired for the sustainability of the chemical industry, where the production of hazardous waste is a prime concern. However, to date, there are very few tools in chemists’ toolboxes that are able to produce arylamines in a sustainable manner. Herein, a robust one-pot approach for constructing bio-based arylamines via a combined photooxidative dearomatization-rearomatization strategy is presented. The developed methodology enables the synthesis of structurally complex amines in moderate-to-good isolated yields using biomass-derived phenols, natural α-amino acids, and naphthols under remarkably mild reaction conditions. For the photooxygenation of phenols, a novel chrysazine-based catalyst system was introduced, demonstrating its efficiency for the synthesis of natural products – hallerone, rengyolone, and the pharmaceutically relevant prodrug DHED.  相似文献   

12.
Fluorescence quenching processes of poly[2-methoxy-5-(2‘ethyl-hexoxy)-p-phenylene vinylene] (MEH-PPV) in solution by electron acceptors, O2 and acid, have been studied. Static quenching of the fluorescence from MEH-PPV by an electron acceptor (DDQ or TCNE) occurs due to electron transfer from MEH-PPV to the electron acceptor and this electron transfer quenching can be promoted by chloroform. Photooxidation takes place in the MEH-PPV solution and singlet oxygen is an intermediate in the photooxidation, according to the results of ESR spectroscopy. Acid also plays an important role in the fluorescence quenching process of MEH-PPV, by the protonation of the alkoxy groups in the molecular chain.  相似文献   

13.
A new class of substituted porphyrins has been developed in which a different number of cyclometalated PtII C^N^N acetylides and polyethylene glycol (PEG) chains are attached to the meso positions of the porphyrin core, which are meant for photophysical, electrochemical, and in vitro light‐induced singlet oxygen (1O2) generation studies. All of these ZnII porphyrin–PtII C^N^N acetylide conjugates show moderate to high (ΦΔ=0.55 to 0.63) singlet oxygen generation efficiency. The complexes are soluble in organic solvents but, despite the PEG substituents, slowly aggregate in aqueous solvent systems. These conjugates also exhibit interesting photophysical properties, including near‐complete photoinduced energy transfer (PEnT) through the rigid acetylenic bond(s) from the PtII C^N^N antenna units to the ZnII porphyrin core, which shows sensitized luminescence, as shown by quenching of PtII C^N^N‐based luminescence. Electrochemical measurements show a set of redox processes that are approximately the sum of what is observed for the PtII C^N^N acetylide and ZnII porphyrin units. UV/Vis spectroscopic properties are supported by DFT calculations.  相似文献   

14.
N-(α-Benzotriazolylalkyl)arylacetamides, readily available from an arylacetamide, an aldehyde and benzotriazole, undergo intramolecular cyclization under acidic conditions to give 1-aryl-1,4-dihydro-3(2H)-isoquinolinones in good to excellent yields. Similarly, 2-(benzotriazol-1-yl)-2-(o-hydroxyphenyl)ethanols, obtained by lithiation of 2-(benzotriazol-1-ylmethyl)phenols followed by quenching with aldehydes or ketones, eliminate a molecule of water and a molecule of benzotriazole yielding 2-substituted and 2,3-disubstituted benzofurans.  相似文献   

15.
There is an ongoing interest in 1O2 sensitizers, whose activity is selectively controlled by their interaction with DNA. To this end, we synthesized three isomeric pyridinium alkynylanthracenes 2 o p and a water-soluble trapping reagent for 1O2. In water and in the absence of DNA, these dyes show a poor efficiency to sensitize the photooxygenation of the trapping reagent as they decompose due to electron transfer processes. In contrast, in the presence of DNA 1O2 is generated from the excited DNA-bound ligand. The interactions of 2 o p with DNA were investigated by thermal DNA melting studies, UV/vis and fluorescence spectroscopy, and linear and circular dichroism spectroscopy. Our studies revealed an intercalative binding with an orientation of the long pyridyl-alkynyl axis parallel to the main axis of the DNA base pairs. In the presence of poly(dA : dT), all three isomers show an enhanced formation of singlet oxygen, as indicated by the reaction of the latter with the trapping reagent. With green light irradiation of isomer 2 o in poly(dA : dT), the conversion rate of the trapping reagent is enhanced by a factor >10. The formation of 1O2 was confirmed by control experiments under anaerobic conditions, in deuterated solvents, or by addition of 1O2 quenchers. When bound to poly(dG : dC), the opposite effect was observed only for isomers 2 o and 2 m , namely the trapping reagent reacted significantly slower. Overall, we showed that pyridinium alkynylanthracenes are very useful intercalators, that exhibit an enhanced photochemical 1O2 generation in the DNA-bound state.  相似文献   

16.
Quenching kinetics of the 4,4′-dimethylbenzophenone triplet state with para-substituted phenol derivatives RC6H4OH (R = H, F, Cl, Br, I) was studied by nanosecond laser photolysis in aqueous micellar solutions of sodium dodecyl sulfate. The kinetic data were processed in the framework of a model with the Poisson distribution of phenols between micelles. The partition constants of RC6H4OH between the aqueous and micellar phases and the rate constants of their escape from a micelle and quenching of the 4,4′-dimethylbenzophenone triplet state with phenols in micelles were obtained. The quenching proceeds with high rate constants through hydrogen atom transfer to form the ketyl and phenoxyl radicals (no radicals are formed in the case of 4-iodophenol), which then recombine in a micelle or escape into the outer aqueous volume. The application of an external magnetic field retards radical pair recombination in a micelle and increases the fraction of radicals escaped into the aqueous phase. The quantum yield of radical pairs decreases 2.5-fold, and the rate of their recombination in micelles increases 2.5-fold on going from 4-chloro- to 4-bromophenol. This is caused by the acceleration of triplet radical pair recombination in the solvent cage. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1391–1396, June, 2005.  相似文献   

17.
Abstract

A quantitative analysis of singlet oxygen is described, permitting, in combination with actinometry, the determination of quantum yields of photooxydation as well as of singlet oxygen production. The procedure is applied to humic materials dissolved in water which have been shown to be singlet oxygen sensitizers. The quenching of corresponding triplet states by either oxygen or transition metal ions is observed in laser photolysis experiments  相似文献   

18.
Progress in the photodynamic therapy (PDT) of cancer should benefit from a rationale to predict the most efficient of a series of photosensitizers that strongly absorb light in the phototherapeutic window (650–800 nm) and efficiently generate reactive oxygen species (ROS=singlet oxygen and oxygen‐centered radicals). We show that the ratios between the triplet photosensitizer–O2 interaction rate constant (kD) and the photosensitizer decomposition rate constant (kd), kD/kd, determine the relative photodynamic activities of photosensitizers against various cancer cells. The same efficacy trend is observed in vivo with DBA/2 mice bearing S91 melanoma tumors. The PDT efficacy intimately depends on the dynamics of photosensitizer–oxygen interactions: charge transfer to molecular oxygen with generation of both singlet oxygen and superoxide ion (high kD) must be tempered by photostability (low kd). These properties depend on the oxidation potential of the photosensitizer and are suitably combined in a new fluorinated sulfonamide bacteriochlorin, motivated by the rationale.  相似文献   

19.
本文对竹红菌素自敏光氧化反应的机制作了较详细的研究,竹红菌素通过自敏光氧化反应生成不稳定的过氧化物,它可以放出1O2回到母体化合物,也可以转化为稳定的氧化产物,我们用活泼的单重态氧的接受体捕获到了体系中放出的1O2,用吸收光谱的变化证明过氧化物回到了母体化合物。文中还用猝灭实验证实此自敏光氧化反应除涉及1O2机制外,还有其它机制起着作用。  相似文献   

20.
利用激光闪光光解方法研究了一系列胺类、酚类、醇类在脱氧乙腈中猝灭噻吨酮(TX)三重态的反应,得到了相应的瞬态吸收光谱和猝灭速率常数(kq).通过对光谱演变特性的分析,推断出三重态噻吨酮与不含有活泼氢的胺发生了电子转移反应,与含有活泼氢的胺发生了电子-质子转移反应.三重态噻吨酮与酚类、醇类反应中观察到噻吨酮加氢自由基的生成,据此推断出三重态噻吨酮与酚类、醇类发生了氢转移反应.胺类的猝灭速率常数随着反应自由能变(ΔG)的增大而减小,说明电子转移影响了噻吨酮三重态的猝灭.酚类的猝灭速率常数先随ΔG增大而减小,后随酚阳离子的酸性增强逐渐增大,可能是猝灭过程中电子转移影响减弱的同时氢转移影响逐渐增强.醇类的猝灭速率常数随着醇的α-C—H键能的增大而减小,说明α-C—H键能是影响噻吨酮三重态猝灭的关键因素.比较以前研究的胺类、酚类、醇类与三重态呫吨酮(XT)、芴酮(FL)反应的结果可知,由于分子结构差异性的影响,相关的猝灭速率常数按照呫吨酮、噻吨酮、芴酮的顺序逐渐减小.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号