首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The extended state observer (ESO) is the most important part of an emerging control technology known as active disturbance rejection control to this day, aiming at estimating “total disturbance” from observable measured output. In this paper, we construct a nonlinear ESO for a class of uncertain lower triangular nonlinear systems with stochastic disturbance and show its convergence, where the total disturbance includes internal uncertain nonlinear part and external stochastic disturbance. The numerical experiments are carried out to illustrate effectiveness of the proposed approach.  相似文献   

2.
In this paper, we apply the active disturbance rejection control (ADRC) to stabilization for lower triangular nonlinear systems with large uncertainties. We first design an extended state observer (ESO) to estimate the state and the uncertainty, in real time, simultaneously. The constant gain and the time‐varying gain are used in ESO design separately. The uncertainty is then compensated in the feedback loop. The practical stability for the closed‐loop system with constant gain ESO and the asymptotic stability with time‐varying gain ESO are proven. The constant gain ESO can deal with larger class of nonlinear systems but causes the peaking value near the initial stage that can be reduced significantly by time‐varying gain ESO. The nature of estimation/cancelation makes the ADRC very different from high‐gain control where the high gain is used in both observer and feedback. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
ABSTRACT

In this paper, we apply the active disturbance rejection control, an emerging control technology, to output-feedback stabilisation for a class of uncertain multi-input multi-output nonlinear systems with vast stochastic uncertainties. Two types of extended state observers (ESO) are designed to estimate both unmeasured states and stochastic total disturbance which includes unknown system dynamics, unknown stochastic inverse dynamics, external stochastic disturbance without requiring the statistical characteristics, uncertain nonlinear interactions between subsystems, and uncertainties caused by the deviation of control parameters from their nominal values. The estimations decouple approximately the system after cancelling stochastic total disturbance in the feedback loop. As a result, we are able to design an ESO-based stabilising output-feedback and prove the practical mean square stability for the closed-loop system with constant gain ESO and the asymptotic mean square stability with time-varying gain ESO, respectively. Some numerical simulations are presented to demonstrate the effectiveness of the proposed output-feedback control scheme.  相似文献   

4.
This paper is concerned with global stabilization via output feedback for a class of stochastic nonlinear systems with time‐varying continuous output function. Under linear growth conditions, a new double‐domination method is proposed for the first time to construct an output‐feedback stabilizing controller. Different from the related results, the design of the observer is performed without using the information on the output function and nonlinearities. This paper also provides a viewpoint at the feedback stabilization to eliminate the continuous measurement error originating from inaccurate detection of system state. A simulation example is presented to demonstrate the effectiveness of control strategy.  相似文献   

5.
In this paper, the practical mean-square convergence of active disturbance rejection control for a class of uncertain stochastic nonlinear systems modelled by the Itô-type stochastic differential equations with vast stochastic uncertainties is developed. We first design an extended state observer (ESO) to estimate both the unmeasured states and the stochastic total disturbance which includes unknown internal system dynamics, external stochastic disturbance without known statistical characteristics, unknown stochastic inverse dynamics, and uncertainty caused by the deviation of control parameter from its nominal value. The stochastic total disturbance is then cancelled (compensated) in the feedback loop. An ESO-based output-feedback control is finally designed analogously as for the system without uncertainties. The practical mean-square reference tracking and practical mean-square stability of the resulting closed-loop system are achieved. The numerical experiments are carried out to illustrate the effectiveness of the proposed approach.  相似文献   

6.
For a class of high‐order stochastic nonlinear systems with stochastic inverse dynamics which are neither necessarily feedback linearizable nor affine in the control input, this paper investigates the problem of state‐feedback stabilization for the first time. Under some weaker assumptions, a smooth state‐feedback controller is designed, which ensures that the closed‐loop system has an almost surely unique solution on [0, ∞), the equilibrium at the origin of the closed‐loop system is globally asymptotically stable in probability, and the states can be regulated to the origin almost surely. A simulation example demonstrates the control scheme. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
This paper investigates active disturbance rejection control involving the fractional‐order tracking differentiator, the fractional‐order PID controller with compensation and the fractional‐order extended state observer for nonlinear fractional‐order systems. Firstly, the fractional‐order optimal‐time control scheme is studied to propose the fractional‐order tracking differentiator by the Hamilton function and fractional‐order optimal conditions. Secondly, the linear fractional‐order extend state observer is offered to acquire the estimated value of the sum of nonlinear functions and disturbances existing in the investigated nonlinear fractional‐order plant. For the disturbance existing in the feedback output, the effect of the disturbance is discussed to choose a reasonable parameter in fractional‐order extended state observer. Thirdly, by this observed value, the nonlinear fractional‐order plant is converted into a linear fractional‐order plant by adding the compensation in the controller. With the aid of real root boundary, complex root boundary, and imaginary boot boundary, the approximate stabilizing boundary with respect to the integral and differential coefficients is determined for the given proportional coefficient, integral order and differential order. By choosing the suitable parameters, the fractional‐order active disturbance rejection control scheme can deal with the unknown nonlinear functions and disturbances. Finally, the illustrative examples are given to verify the effectiveness of fractional‐order active disturbance rejection control scheme. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, the decentralized adaptive neural network (NN) output‐feedback stabilization problem is investigated for a class of large‐scale stochastic nonlinear strict‐feedback systems, which interact through their outputs. The nonlinear interconnections are assumed to be bounded by some unknown nonlinear functions of the system outputs. In each subsystem, only a NN is employed to compensate for all unknown upper bounding functions, which depend on its own output. Therefore, the controller design for each subsystem only need its own information and is more simplified than the existing results. It is shown that, based on the backstepping method and the technique of nonlinear observer design, the whole closed‐loop system can be proved to be stable in probability by constructing an overall state‐quartic and parameter‐quadratic Lyapunov function. The simulation results demonstrate the effectiveness of the proposed control scheme. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
This paper addresses the problem of global output feedback stabilization for a class of upper‐triangular systems with perturbing nonlinearities that are higher‐order in the unmeasurable states. A new design method based on the homogeneous domination approach and finite‐time stabilization technique is developed, which leads to global output feedback stabilizers for the upper‐triangular nonlinear systems under a homogeneous growth condition. A new perspective shown in this paper is that the finite‐time stabilization, in addition to its faster convergence rate, can also be utilized to handle control problems that were previously unresolved under asymptotic stabilization. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
This paper investigates the simultaneous stabilization of a collection of continuous single‐input non‐linear stochastic systems, with coefficients that are not necessarily locally Lipschitz. A sufficient condition for the existence of a continuous simultaneously stabilizing feedback control is proposed — it is based on the generalized stochastic Lyapunov theorem and on the technique of stochastic control Lyapunov functions. This condition is also necessary, provided that the system's coefficients satisfy some regularity conditions. Moreover, the proposed feedback can be chosen to be bounded under the assumption that appropriate control Lyapunov functions are known. All the proposed simultaneously stabilizing state feedback controllers are explicitly constructed. Finally, two simulation examples are provided to demonstrate the effectiveness of the proposed approach.  相似文献   

11.
This paper poses and solves a new problem of state feedback stabilization for a class of high‐order stochastic nonlinear systems in which the power order restriction and growth condition are relaxed to a more general form. Based on the ideas of the homogeneous systems theory and the adding of a power integrator technique, a state feedback controller is constructed to ensure that the equilibrium at the origin of the closed‐loop system is globally asymptotically stable in probability and that the problem of inverse optimal stabilization in probability is solved. The efficiency of the state feedback controller is demonstrated by a simulation example. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
This paper further considers a more general class of stochastic nonlinear systems with stochastic integral input‐to‐state stability (SiISS) inverse dynamics and drift and diffusion terms depending upon the other states besides stochastic inverse dynamics and the first state. By skillfully choosing the designed functions and the update laws of parameters, and using the important mathematical tools established in IEEE Trans. Automat. Contr. 2010; 55 (2):304–320, a unifying framework of state feedback controller is proposed to guarantee that all the signals of the closed‐loop system are bounded almost surely and the states can be regulated to zero almost surely. A simulation example demonstrates the effectiveness of the control scheme. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper, we investigate the problem of global output feedback stabilization for a class of planar nonlinear systems under a more general growth condition, which encompasses both lower‐order and higher‐order state growths with output‐dependent rates. For more accurate estimation, two new observers with nonlinear gains are constructed to estimate the states on the lower‐order and higher‐order scales, respectively. The estimates produced from the dual‐observer are used delicately in the output feedback control law with both lower‐order and higher‐order modes. The overall stability of the system is guaranteed by rigorously choosing these nonlinear gains in the control law and the dual‐observer.  相似文献   

14.
In this paper, the global sampled‐data output‐feedback stabilization problem is considered for a class of stochastic nonlinear systems. First, based on output‐feedback domination technique and emulation approach, a systematic design procedure for sampled‐data output‐feedback controller is proposed for a class of stochastic lower‐triangular nonlinear systems. It is proved that the proposed sampled‐data output‐feedback controller will stabilize the given stochastic nonlinear system in the sense of mean square exponential stability. Because of the domination nature of the proposed control approach, it is shown that the proposed control approach can also be used to handle the global sampled‐data output‐feedback stabilization problems for a more general class of stochastic non‐triangular nonlinear systems. Finally, simulation examples are given to demonstrate the effectiveness of the proposed method. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

15.
16.
This paper considers the problem of output feedback stabilization for a class of stochastic feedforward nonlinear systems with input and state delay. Under a set of coordinate transformations, we first design a linear output feedback controller for a nominal system. Then, with the aid of feedback domination technique and an appropriate Lyapunov–Krasovskii functional, it is proved that the proposed linear output feedback controller can drive the closed‐loop system globally asymptotically stable in probability. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper, the dynamic self‐triggered output‐feedback control problem is investigated for a class of nonlinear stochastic systems with time delays. To reduce the network resource consumption, the dynamic event‐triggered mechanism is implemented in the sensor‐to‐controller channel. Criteria are first established for the closed‐loop system to be stochastically input‐to‐state stable under the event‐triggered mechanism. Furthermore, sufficient conditions are given under which the closed‐loop system with dynamic event‐triggered mechanism is almost surely stable, and the output‐feedback controller as well as the dynamic event‐triggered mechanism are co‐designed. Moreover, a dynamic self‐triggered mechanism is proposed such that the nonlinear stochastic system with the designed output‐feedback controller is stochastically input‐to‐state stable and the Zeno phenomenon is excluded. Finally, a numerical example is provided to illustrate the effectiveness of proposed dynamic self‐triggered output‐feedback control scheme.  相似文献   

18.
The paper proposes a novel control design for nonlinear systems with multiple uncertainties and nonlinear measurement. The output linearization is utilized to handle the nonlinearities in system dynamics and measurement. Firstly, the integrator chain for nonlinear systems with multiple uncertainties is analyzed. Based on the fundamental integrator chain form, the equivalent total effect of multiple uncertainties is summarized as total disturbance. By timely estimating and compensating for the total disturbance, an active disturbance rejection control design to handle both multiple uncertainties and nonlinear measurement is proposed. Moreover, the transient performance of the corresponding closed‐loop system is rigorously studied, which theoretically reveals the high consistence of the tracking performance despite various multiple uncertainties.  相似文献   

19.
In this paper, the problem of simultaneous stabilization in probability by state feedback is investigated for a class of stochastic nonlinear systems whose drift and diffusion terms are dependent on the control and for which classical methods are not applicable. Under the assumption that a collection of stochastic control Lyapunov functions (SCLFs) is known and based on the generalized stochastic Lyapunov theorem, we derive sufficient conditions for the simultaneous stabilization in probability by a continuous state feedback controller that we explicitly compute. We also derive a necessary condition when the system coefficients satisfy some regularity conditions. This work generalizes previous results on the simultaneous stabilization of stochastic nonlinear systems. The obtained results are illustrated by a numerical example.  相似文献   

20.
The Razumikhin‐type approach is introduced to solve the state feedback stabilization problem for a class of stochastic high‐order nonlinear systems with time‐varying delay. Based on the general Razumikhin‐type theorem on stochastic systems established in our paper and backstepping design method, a state feedback controller is constructed to ensure the origin of closed‐loop system is globally asymptotically stable in probability. Our methodology enables us to completely remove the limitations on the derivative of delay, which is the common assumption of stochastic high‐order nonlinear systems with time‐varying delay. The efficiency of the state feedback controller is demonstrated by simulation examples. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号