首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
利用直流反应磁控溅射技术制得N-Al共掺的p型ZnO薄膜,N2O为生长气氛.利用X射线衍射(XRD),Hall实验,X射线光电子能谱(XPS)和光学透射谱对共掺ZnO薄膜的性能进行研究.结果表明,薄膜中Al的存在显著提高了N的掺杂量,N以N-Al键的形式存在.N-Al共掺ZnO薄膜具有优良的p型传导特性.当Al含量为0.15wt%时,共掺ZnO薄膜的电学性能取得最优值,载流子浓度为2.52×1017cm-3,电阻率为57.3Ω·cm,Han迁移率为0.43cm2/(V·s).N-Al共掺p型ZnO薄膜具有高度c轴取向,在可见光区域透射率高达90%.  相似文献   

2.
利用超声雾化热分解法(USP),通过N-Al共掺的方法,制备出p型ZnO薄膜.利用霍尔测试、X射线衍射(XRD)和扫描电子显微镜分析了不同生长时间ZnO薄膜样品的电学特性、结构和表面形貌的变化.结果表明:其它条件固定时,只有在合适的生长时间条件下,才能得到电学性能较好的N-Al共掺p型ZnO薄膜(电阻率为46.8 Ω·cm、迁移率为0.05 cm2·V-1·s-1、载流子浓度是2.86×1018 cm-3.  相似文献   

3.
直流反应磁控溅射Al,N共掺方法生长p型ZnO薄膜及其特性   总被引:10,自引:1,他引:9  
报道了利用直流反应磁控溅射以Al,N共掺杂技术生长p型ZnO薄膜 .ZnO薄膜在不同衬底温度下沉积于α Al2 O3 (0 0 0 1)衬底上 ,N来自NH3 与O2 的生长气氛 ,Al来自ZnxAl1-x(x =0 9)靶材 .利用XRD ,AFM ,Hall,SIMS和透射光谱对其性能进行了研究 .结果表明 ,ZnO薄膜具有高度c轴择优取向 ,4 5 0℃、6 0 0℃分别实现了p型转变 ,电阻率为 1e2 ~ 1e3 Ω·cm ,载流子浓度为 1e15~ 1e16cm-3 ,迁移率为 0.5~ 1.32cm2 / (V·s) .薄膜中Al原子促进了N原子的掺入 .实验还表明 ,p ZnO薄膜在可见光区域具有很高的透射率 (约为 90 % ) ,室温下光学带宽为 3 2 8eV  相似文献   

4.
利用直流反应磁控溅射法,以N2O为N掺杂源,用Al-N共掺技术制备了p型Zn0.95Mg0.05O薄膜.用X射线衍射分析(XRD)、Hall测试仪和紫外可见(UV)透射谱等研究方法对其晶体结构、电学性能和禁带宽度进行分析.XRD分析结果表明,Zn0.95Mg0.05O薄膜具有良好的晶格取向,Hall测试的结果所得p型Zn0.95Mg0.05O薄膜最低电阻率为58.5Ω·cm,载流子浓度为1.95×1017 cm-3,迁移率为0.546cm2/(V·s),UV透射谱所推出的薄膜禁带宽度中,纯ZnO,p型Zn0.95Mg0.05O和p型Zn0.9Mg0.1O分别为3.34,3.39和3.46eV,可以看出Mg在ZnO禁带宽度中起了调节作用.  相似文献   

5.
利用直流反应磁控溅射法,以N2O为N掺杂源,用Al-N共掺技术制备了p型Zn0.95Mg0.05O薄膜.用X射线衍射分析(XRD)、Hall测试仪和紫外可见(UV)透射谱等研究方法对其晶体结构、电学性能和禁带宽度进行分析.XRD分析结果表明,Zn0.95Mg0.05O薄膜具有良好的晶格取向,Hall测试的结果所得p型Zn0.95Mg0.05O薄膜最低电阻率为58.5Ω·cm,载流子浓度为1.95×1017 cm-3,迁移率为0.546cm2/(V·s),UV透射谱所推出的薄膜禁带宽度中,纯ZnO,p型Zn0.95Mg0.05O和p型Zn0.9Mg0.1O分别为3.34,3.39和3.46eV,可以看出Mg在ZnO禁带宽度中起了调节作用.  相似文献   

6.
MOCVD法以NO气体为掺杂源生长p型ZnO薄膜   总被引:6,自引:4,他引:2  
采用金属有机化学气相沉积方法在玻璃上生长了掺氮的低电阻p型ZnO薄膜.实验使用NO和N2O共同作为氧源,且NO同时作为掺氮源,二乙基锌作为锌源.X射线衍射测试表明薄膜具有c轴择优取向的结构特性,二次离子质谱分析证实了氮被掺入了ZnO薄膜.通过优化锌源流量获得了最高空穴浓度为1.97×10/up18/cm-3,最低电阻率为3.02Ω·cm的ZnO薄膜.  相似文献   

7.
高松华  高立华  陈礼炜 《半导体光电》2019,40(6):830-832, 851
采用射频磁控溅射和退火处理方法在普通玻璃基底上制备了N、Al共掺的ZnO薄膜。利用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、四探针电阻测试仪和紫外-可见光光谱及X射线光电子能谱(XPS)等测试手段,分析了溅射功率对薄膜表面形貌结构及光电性能的影响。研究结果表明:不同溅射功率下所制备的薄膜均为具有c轴择优取向的六角纤锌矿结构,在可见光范围内,平均透过率都超过了85%;在溅射功率为140W条件下,N、Al共掺的ZnO薄膜显示出p型导电特性。  相似文献   

8.
采用脉冲激光沉积技术制备了Li-N双受主共掺杂p型ZnO薄膜,其中Li来自Li掺杂ZnO陶瓷靶,N来自N2O生长气氛.室温Hall测试发现Li-N共掺p型ZnO薄膜的最低电阻率为3.99Ω·cm,迁移率为0.17cm2/(V·s),空穴浓度为9.12×1018cm-3.PL谱测试发现了与Li受主和N受主态相关的发光峰,其受主能级分别约为120和222meV.由p-ZnO:(Li,N)薄膜制备的ZnO同质p-n结具有整流特性.  相似文献   

9.
采用脉冲激光沉积技术制备了Li-N双受主共掺杂p型ZnO薄膜,其中Li来自Li掺杂ZnO陶瓷靶,N来自N2O生长气氛.室温Hall测试发现Li-N共掺p型ZnO薄膜的最低电阻率为3.99Ω·cm,迁移率为0.17cm2/(V·s),空穴浓度为9.12×1018cm-3.PL谱测试发现了与Li受主和N受主态相关的发光峰,其受主能级分别约为120和222meV.由p-ZnO:(Li,N)薄膜制备的ZnO同质p-n结具有整流特性.  相似文献   

10.
报道了利用直流反应磁控溅射以Al,N共掺杂技术生长p型ZnO薄膜.ZnO薄膜在不同衬底温度下沉积于α-Al2O3(0001)衬底上,N来自NH3与O2的生长气氛,Al来自ZnxAl1-x(x=0.9)靶材.利用XRD,AFM,Hall,SIMS和透射光谱对其性能进行了研究.结果表明,ZnO薄膜具有高度c轴择优取向,450℃、600℃分别实现了p型转变,电阻率为102~103Ω*cm,载流子浓度为1015~1016cm-3,迁移率为0.5~1.32cm2/(V*s).薄膜中Al原子促进了N原子的掺入.实验还表明,p-ZnO薄膜在可见光区域具有很高的透射率(约为90%),室温下光学带宽为3.28eV.而在450℃生长的p-ZnO具有较小的晶粒度和表面粗糙度.  相似文献   

11.
DUV lithography, using the 248 nm wavelength, is a viable manufacturing option for devices with features at 130 nm and less. Given the low kl value of the lithography, integrated process development is a necessary method for achieving acceptable process latitude. The application of assist features for rule based OPC requires the simultaneous optimization of the mask, illumination optics and the resist.Described in this paper are the details involved in optimizing each of these aspects for line and space imaging.A reference pitch is first chosen to determine how the optics will be set. The ideal sigma setting is determined by a simple geometrically derived expression. The inner and outer machine settings are determined, in turn,with the simulation of a figure of merit. The maximum value of the response surface of this FOM occurs at the optimal sigma settings. Experimental confirmation of this is shown in the paper.Assist features are used to modify the aerial image of the more isolated images on the mask. The effect that the diffraction of the scattering bars (SBs) has on the image intensity distribution is explained. Rules for determining the size and placement of SBs are also given.Resist is optimized for use with off-axis illumination and assist features. A general explanation of the material' s effect is discussed along with the affect on the through-pitch bias. The paper culminates with the showing of the lithographic results from the fully optimized system.  相似文献   

12.
From its emergence in the late 1980s as a lower cost alternative to early EEPROM technologies, flash memory has evolved to higher densities and speedsand rapidly growing acceptance in mobile applications.In the process, flash memory devices have placed increased test requirements on manufacturers. Today, as flash device test grows in importance in China, manufacturers face growing pressure for reduced cost-oftest, increased throughput and greater return on investment for test equipment. At the same time, the move to integrated flash packages for contactless smart card applications adds a significant further challenge to manufacturers seeking rapid, low-cost test.  相似文献   

13.
The parallel thinning algorithm with two subiterations is improved in this paper. By analyzing the notions of connected components and passes, a conclusion is drawn that the number of passes and the number of eight-connected components are equal. Then the expression of the number of eight-connected components is obtained which replaces the old one in the algorithm. And a reserving condition is proposed by experiments, which alleviates the excess deletion where a diagonal line and a beeline intersect. The experimental results demonstrate that the thinned curve is almost located in the middle of the original curve connectivelv with single pixel width and the processing speed is high.  相似文献   

14.
The relation between the power of the Brillouin signal and the strain is one of the bases of the distributed fiber sensors of temperature and strain. The coefficient of the Bfillouin gain can be changed by the temperature and the strain that will affect the power of the Brillouin scattering. The relation between the change of the Brillouin gain coefficient and the strain is thought to be linear by many researchers. However, it is not always linear based on the theoretical analysis and numerical simulation. Therefore, errors will be caused if the relation between the change of the Brillouin gain coefficient and the strain is regarded as to be linear approximately for measuring the temperature and the strain. For this reason, the influence of the parameters on the Brillouin gain coefficient is proposed through theoretical analysis and numerical simulation.  相似文献   

15.
Today, micro-system technology and the development of new MEMS (Micro-Electro-Mechanical Systems) are emerging rapidly. In order for this development to become a success in the long run, measurement systems have to ensure product quality. Most often, MEMS have to be tested by means of functionality or destructive tests. One reason for this is that there are no suitable systems or sensing probes available which can be used for the measurement of quasi inaccessible features like small holes or cavities. We present a measurement system that could be used for these kinds of measurements. The system combines a fiber optical, miniaturized sensing probe with low-coherence interferometry, so that absolute distance measurements with nanometer accuracy are possible.  相似文献   

16.
This paper presents a new method to increase the waveguide coupling efficiency in hybrid silicon lasers. We find that the propagation constant of the InGaAsP emitting layer can be equal to that of the Si resonant layer through improving the design size of the InP waveguide. The coupling power achieves 42% of the total power in the hybrid lasers when the thickness of the bonding layer is 100 nm. Our result is very close to 50% of the total power reported by Intel when the thickness of the thin bonding layer is less than 5 nm. Therefore, our invariable coupling power technique is simpler than Intel's.  相似文献   

17.
A new quantum protocol to teleport an arbitrary unknown N-qubit entangled state from a sender to a fixed receiver under M controllers(M < N) is proposed. The quantum resources required are M non-maximally entangled Greenberger-Home-Zeilinger (GHZ) state and N-M non-maximally entangled Einstein-Podolsky-Rosen (EPR) pairs. The sender performs N generalized Bell-state measurements on the 2N particles. Controllers take M single-particle measurement along x-axis, and the receiver needs to introduce one auxiliary two-level particle to extract quantum information probabilistically with the fidelity unit if controllers cooperate with it.  相似文献   

18.
It is well known that adding more antennas at the transmitter or at the receiver may offer larger channel capacity in the multiple-input multiple-output(MIMO) communication systems. In this letter, a simple proof is presented for the fact that the channel capacity increases with an increase in the number of receiving antennas. The proof is based on the famous capacity formula of Foschini and Gans with matrix theory.  相似文献   

19.
A continuous-wave (CW) 457 nm blue laser operating at the power of 4.2 W is demonstrated by using a fiber coupled laser diode module pumped Nd: YVO4 and using LBO as the intra-cavity SHG crystal With the optimization of laser cavity and crystal parameters, the laser operates at a very high efficiency. When the pumping power is about 31 W, the output at 457nm reaches 4.2 W, and the optical to optical conversion efficiency is about 13.5% accordingly. The stability of the out putpower is better than 1.2% for 8 h continuously working.  相似文献   

20.
Call for Papers     
正Wireless Body-area Networks The last decade has witnessed the convergence of three giant worlds:electronics,computer science and telecommunications.The next decade should follow this convergence in most of our activities with the generalization of sensor networks.In particular with the progress in medicine,people live longer and the aging of population will push the development of wireless personal networks  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号