首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
When dynamic load is applied on a granular assembly, the time-dependent dynamic load and initial static load (such as gravity stress) act together on individual particles. In order to better understand how dynamic load triggers the micro-structure's evolution and furtherly the ensemble behavior of a granular assembly, we propose a criterion to recognize the major propagation path of dynamic load in 2D granular materials, called the “dynamic force chain”. Two steps are involved in recognizing dynamic force chains: (1) pick out particles with dynamic load larger than the threshold stress, where the attenuation of dynamic stress with distance is considered; (2) among which quasi-linear arrangement of three or more particles are identified as a force chain. The spatial distribution of dynamic force chains in indentation of granular materials provides a direct measure of dynamic load diffusion. The statistical evolution of dynamic force chains shows strong correlation with the indentation behaviors.  相似文献   

2.
颗粒摩擦对颗粒材料剪切行为影响的试验研究   总被引:2,自引:0,他引:2  
通过对一种类似于土的颗粒材料--玻璃珠开展一系列室内直剪试验,研究颗粒间摩擦对颗粒材料剪切行为的影响. 试验一共考虑了4种不同的摩擦情况:干燥状态、用水浸润状态、完全淹没在水中和用油浸润状态. 分析试验结果发现,与干燥状态试样相比,用油浸润能明显降低试样的剪胀性和抗剪强度,而用水浸润和淹没在水中的方法没有产生显著的影响. 此外,通过在剪胀关系式中引入可变剪胀系数来考虑颗粒摩擦对颗粒材料剪胀性的影响,并从颗粒滑动与滚动的细观机理上初步解释了颗粒滑动摩擦角对临界状态摩擦角的影响规律.  相似文献   

3.
剪胀性是包括岩土材料在内的摩擦性颗粒材料的重要特征之一,其形成机制与颗粒体系内部拓扑结构的演化有关.基于颗粒体系细观数据,可对颗粒体系内部的拓扑结构特征及演化进行分析,进而建立拓扑演化与宏观剪胀变形之间的联系.采用离散单元法,根据密实、中密和松散摩擦性颗粒材料双轴试验的宏微观数据,从拓扑参量演化及接触网络拓扑变化所引起...  相似文献   

4.
The interaction between dry granular materials and an inclined plate is numerically studied using a three-dimensional discrete element method (DEM) simulation. In the simulation, a plate is dragged horizontally through densely packed dry granular materials. To examine the effect of the rake angle α of the plate on the drag force acting on the plate, three cases with α = 50°, 70°, and 90° are compared (α = 90° for a vertical plate). The results show that for all cases, the force oscillates as the plate advances. As α decreases, the amplitude and frequency of the force oscillation decrease and increase, respectively. The force oscillation is attributed to the periodic evolution of a shear band formed in the materials. The relationships between the rake angle, evolution of the shear band, and drag force can be explained quantitatively by using a three-dimensional wedge model considering the variation of the local volume fraction inside the shear band.  相似文献   

5.
The effect of initial fabric anisotropy produced by sample preparation on the shear behavior of granular soil is investigated by performing discrete element method (DEM) simulations of fourteen biaxial tests in drained conditions. Numerical test specimens are prepared by three means: gravitational deposition, multi-layer compression, and isotropic compression, such that different initial inherent soil fabrics are created. The DEM simulation results show that initial fabric anisotropy exerts a considerable effect on the shear behavior of granular soil, and that the peak stress ratio and peak dilatancy increase with an increase in the fabric index an that is estimated from the contact orientations. The stress–dilatancy relationship is found to be independent of the initial fabric anisotropy. The anisotropy related to the contact orientation and contact normal force accounts for the main contribution to the mobilized friction angle. Also, the occurrence of contractive shear response in an initial shearing stage is accompanied by the most intense particle rearrangement and microstructural reorganization, regardless of the sample preparation method. Furthermore, the uniqueness of the critical state line in e–log p′ and q–p′ plots is observed, suggesting that the influence of initial fabric anisotropy is erased at large shear strains.  相似文献   

6.
It is well known that geomaterials such as soils exhibit an increase in volume during shearing deformation, referred to as dilatancy. Dilatancy is a typical property of such granular materials as soils and is closely related to changes in the microstructure. Normally consolidated clay exhibits negative dilatancy or contractancy, namely, a decrease in volume during shearing. On the other hand, overconsolidated clay shows positive dilatancy, namely, an increase in volume during shearing. The aim of the present paper is to study the effects of the microstructure, such as dilatancy and permeability, on the strain localization of water-saturated clay using an elasto-viscoplastic constitutive model. Based on the non-linear kinematic hardening theory and a Chaboche type of viscoplasticity model, an elasto-viscoplastic model for both normally consolidated and overconsolidated clays is proposed; the model can address both negative and positive dilatancies. Firstly, the instability of the model under undrained creep conditions is analyzed in terms of the accelerating creep failure. The analysis shows that clay with positive dilatancy is more unstable than clay with negative dilatancy. Secondly, a finite element analysis of the deformation of water-saturated clay is presented with focus on the numerical results under plane strain conditions. From the present numerical analysis, it is found that both dilatancy and permeability prominently affect shear strain localization behavior.  相似文献   

7.
This paper presents a novel, yet thermodynamically consistent, model of the isothermal compaction of loose granular material based on the principle of maximum dissipation rate. The method is first tested out on a simple version of the Bingham model and a hard particle model of rate-independent granular flow where it is seen that only the dissipation function and dilatancy rule are required in either case and the procedures are identical. This hard particle model is subsequently modified by the introduction of damage. Yield surface and flow rules are produced that are broadly in accordance with experimental findings. The key to the above modification is the concept of a dilatancy rule with two contributions. (1) A shear induced negative dilatancy, where any shear deformation has a tendency to produce densification. (2) Under many circumstances, this is countered by positive dilatancy such as at the critical state where the two mechanisms balance. This modification uses the idea that the first contribution is encouraged by microscopic damage local to the particle contacts that might permit compaction to occur under hydrostatic pressure alone. A mechanism is postulated whereby shear stresses operating at the microscopic level, while cancelling out at the macroscopic level, might occur with low levels of damage but produce no overall shear strains.  相似文献   

8.
This paper presents a deceptively simple mathematical model for the deformation of granular materials composed of rigid particles. The model captures many of the diverse features of the behaviour of such a material and emphasises the importance of volume constraints in situations where the deformation is mainly by particle rearrangement. It is constructed using a simple dissipation function and a rather more complicated dilatancy rule containing an updateable reference strain. This allows the solid-like and fluid-like properties of granular materials to be reconciled in a single model.The model has been used to simulate experiments that use an analogue of an ideal granular material [Joer, H.A., Lanier, J., Fahey, M., 1998. Deformation of granular materials due to rotation of principal axes. Geotechnique 48 (5), 605-619] consisting of a two dimensional assembly of thin PVC rods. These experiments clearly illustrate: partially reversible dilatancy in direct shear tests; cyclic shearing leading to liquefaction in constant volume shear tests; and non-coaxiality of the principal axes of stress and strain increment in circular loading tests. These radically different modes of deformation provide a challenging data set that allows the model's potential to be clearly demonstrated.The authors believe that the comparison of these experimental results and our simulations give strong support to the assertion that volume changes associated with shear deformation are responsible for the rotational kinematic hardening seen in granular materials, and hence, the non-coaxiality of the stress and strain-rate tensors.  相似文献   

9.
10.
Recently, the authors have focused on the shear behavior of interface between granular soil body and very rough surface of moving bounding structure. For this purpose, they have used finite element method and a micro-polar elasto-plastic continuum model. They have shown that the boundary conditions assumed along the interface have strong influences on the soil behavior. While in the previous studies, only very rough bounding interfaces have been taken into account, the present investigation focuses on the rough, medium rough and relatively smooth interfaces. In this regard, plane monotonic shearing of an infinite extended narrow granular soil layer is simulated under constant vertical pressure and free dilatancy. The soil layer is located between two parallel rigid boundaries of different surface roughness values. Particular attention is paid to the effect of surface roughness of top and bottom boundaries on the shear behavior of granular soil layer. It is shown that the interaction between roughness of bounding structure surface and the rotation resistance of bounding grains can be modeled in a reasonable manner through considered Cosserat boundary conditions. The influence of surface roughness is investigated on the soil shear strength mobilized along the interface as well as on the location and evolution of shear localization formed within the layer. The obtained numerical results have been qualitatively compared with experimental observations as well as DEM simulations, and acceptable agreement is shown.  相似文献   

11.
We present a numerical study on the penetration of spherical projectiles into a granular bed in the presence of upward gas flows. Due to the presence of interstitial fluid, the force chains between particles in the granular bed are weakened significantly, and this distinguishes the penetration behavior from that in the absence of fluid. An interesting phenomenon, namely granular jet, is observed during the penetration, and the mechanism for its formation and growth is attributed to the merging of granular vortices generated by the interaction between the intruder and primary particles. Moreover, both the final penetration depth and the maximum diameter of the crater are found to follow a power-law dependence with the impact velocity, and the maximum height reached by the granular jet tends to increase linearly as the impact velocity increases, agreeing well with the experimental results reported in the literature.  相似文献   

12.
In [1–6], a model of a nonstationary action of a medium flow on a body moving in this flow was constructed in the form of an associated dynamical system of second order. In the literature, the representation of the aerodynamic force in integral form with a Duhamel type integral is often used (e.g., see [7, 8]). In the present paper, we pay attention to the fact that a system of ODE is equivalent not to a single integro-differential equation but to a family of such equations. Therefore, it is necessary to discuss the problem of the correspondence between their solutions. The integro-differential representation of the aerodynamic force is reduced to a form convenient to realize the procedure of separation of motions. In this case, we single out the first two approximations with respect to a small parameter. It turns out that in the case of actual airfoils one can speak of “detached” rather than “attached” mass. In the problem on the forced drag of an airfoil in a flow, it is shown that for a sufficiently large acceleration the aerodynamic force can change its direction and turn from a drag force into an “accelerating” force for some time. At the same time, in the case of free drag of a sufficiently light plate, the “acceleration” effect is not observed, but in the course of deceleration the plate moves from it original position in the direction opposite to the initial direction of motion.  相似文献   

13.
Equations are given for the elastoplastic strain of a granular medium together with experimental relationships for sands. Equations for the characteristics are drawn up in general form for the two-dimensional case. It is shown that experimental data on the dilatancy rate as a function of the angle of internal friction reflect the condition for orthogonality of the characteristics of the velocity distribution to the direction of the dry-friction forces in the sliding areas. The flow in a shear tester is discussed. The calculation from the universal relationships agrees with experiment.  相似文献   

14.
徐春晖  黄文彬  徐泳 《力学季刊》2003,24(4):500-505
离散元法是分析散体力学行为的数值方法。存在填隙流体时,颗粒之间或颗粒与壁之间产生的法向挤压力和切向阻力、阻力矩,是湿颗粒离散元法的理论基础。二阶流体是以微小偏离牛顿流体本构而考虑时间影响的一种流体。它具有常粘度,并且第一和第二法向应力差正比于剪切率的平方。根据Reynolds润滑理论,采用小参数法,导出了存在填隙二阶流体时,圆球沿平行于平壁缓慢移动时流体的速度场和压力方程,进而求出切向阻力和阻力矩的解析解。有趣的是在推导时所得的速度场和压力方程形式比牛顿流体要复杂得多,但最终结果表明圆球沿平行于平壁移动时因填隙二阶流体引起的切向阻力和阻力矩与牛顿流体时的结果相同。  相似文献   

15.
In order to study the influence of particle shape on the microstructure evolution and the mechanical properties of granular materials, a two-dimensional DEM analysis of samples with three particle shapes, including circular particles, triangular particles, and elongated particles, is proposed here to simulate the direct shear tests of coarse-grained soils. For the numerical test results, analyses are conducted in terms of particle rotations, fabric evolution, and average path length evolution. A modified Rowe's stress–dilatancy equation is also proposed and successfully fitted onto simulation data.  相似文献   

16.
17.
钱劲松  陈康为  张磊 《力学学报》2018,50(5):1041-1050
料在摊铺后形成的颗粒定向排列将导致其力学性质的固有各向异性. 依据粒料的实际不规则形状, 构建了可模拟粒间咬合嵌挤作用的三维离散元复杂形状颗粒; 生成了5 种不同沉积方向的各向异性试件和1种各向同性试件, 对比了各试件在三轴压缩试验中的宏观力学特性差异; 引入组构张量以量化各向异性程度, 利用玫瑰图表达接触法向与接触力的分布特征, 探究了粒料各向异性的细观发展规律. 结果表明: 颗粒长轴愈趋向水平排布, 峰值应力比愈大, 剪缩与剪胀程度愈明显; 相较于各向同性试件, 沉积角$\theta$为料在摊铺后形成的颗粒定向排列将导致其力学性质的固有各向异性. 依据粒料的实际不规则形状, 构建了可模拟粒间咬合嵌挤作用的三维离散元复杂形状颗粒; 生成了5 种不同沉积方向的各向异性试件和1种各向同性试件, 对比了各试件在三轴压缩试验中的宏观力学特性差异; 引入组构张量以量化各向异性程度, 利用玫瑰图表达接触法向与接触力的分布特征, 探究了粒料各向异性的细观发展规律. 结果表明: 颗粒长轴愈趋向水平排布, 峰值应力比愈大, 剪缩与剪胀程度愈明显; 相较于各向同性试件, 沉积角$\theta$为$0^\circ$时, 峰值应力比和最大体积压缩应变分别提高了12.6\%和18.8\%, 其原因在于加载过程中颗粒旋转和滑动百分比更小, 内部调整时间更短、更易被剪密; 固有各向异性对颗粒法向接触力分布的影响不大, 但显著影响接触法向分布特征; 剪切过程中, $\theta$为$90^\circ$时的接触法向各向异性系数先快速减小后逐渐增大, 而$\theta$为$0^\circ$到$60^\circ$时则呈现出增大后稍有回落或趋于稳定的趋势, 且$\theta$ 愈小的试件各向异性系数增大愈快.  相似文献   

18.
Kumar  Aman  DasGupta  Anirvan 《Nonlinear dynamics》2021,103(1):293-308

In this paper, the dynamics of a particle placed on a thin circular plate carrying circumferential harmonic travelling wave is studied. Coulomb friction is used to model the particle–surface interaction. Distinct regions on the plate surface are identified where either of the three phases of particle motion, namely jumping, sliding and sticking, occurs. Also, the effect of wave frequency and the plate geometry on these regions is studied. Interestingly, there exists an optimum plate thickness for which the region of sliding is maximum. At certain wave frequencies, from the numerical simulations within sticking and sliding regions, it is observed that the average particle motion spirals inwards towards the plate centre. Such an average motion is observed whenever the particle is placed initially with a zero velocity relative to the plate surface. The Gedanken experiments discussed herein provide cogent explanations to all the observed average (slow) dynamics and are also found to be useful in predicting the slow dynamics of the particle a priori, that is, before the actual numerical simulations. The particle’s velocity couples the radial and tangential sliding friction components and is found to be the key physical feature that explains the observed behaviour. Also, it is observed that the plate surface excited by circumferential travelling waves can provide acoustic lubrication to a particle by reducing the limiting force required to move it relative to the surface. The methods discussed in this paper can be extended to study the dynamics of a group of particles (granular materials) and extended rigid bodies, interacting with such surface waves.

  相似文献   

19.
We examine emergent, self-organized particle cluster conformations in quasistatically deforming dense granular materials from the perspective of structural stability. A structural mechanics approach is employed, first, to devise a new stability measure for such conformations in equilibrium and, second, to use this measure to explore the evolving stability of jammed states of specific cluster conformations, i.e. particles forming force chains and minimal contact cycles. Knowledge gained on (a) the spatial and temporal evolution of stability of individual jammed conformations and (b) their relative stability levels, offer valuable clues on the rheology and, in particular, self-assembly of granular materials. This study is undertaken using data from assemblies of nonuniformly sized circular particles undergoing 2D deformation in two biaxial compression tests: a discrete element simulation of monotonic loading under constant confining pressure, and cyclic loading of a photoelastic disk assembly under constant volume. Our results suggest that the process of self-assembly in these systems is realized at multiple length scales, and that jammed force chains and minimal cycles form the basic building blocks of this process. In particular, 3-cycles are stabilizing agents that act as granular trusses to the load-bearing force chain columns. This co-evolutionary synergy between force chains and 3-cycles proved common to the different materials under different loading conditions. Indeed, the remarkable similarities in the evolution of stability, prevalence and persistence of minimal cycles and force chains in these systems suggest that these structures and their co-evolution together form a generic feature of dense granular systems under quasistatic loading.  相似文献   

20.
On the modeling of confined buckling of force chains   总被引:3,自引:0,他引:3  
Buckling of force chains, laterally confined by weak network particles, has long been held as the underpinning mechanism for key instabilities arising in dense, cohesionless granular assemblies, e.g. shear banding and slip-stick phenomena. Despite the demonstrated significance of this mechanism from numerous experimental and discrete element studies, there is as yet no model for the confined buckling of force chains. We present herein the first structural mechanical model of this mechanism. Good agreement is found between model predictions and confined force chain buckling events in discrete element simulations. A complete parametric analysis is undertaken to determine the effect of various particle-scale properties on the stability and failure of force chains. Transparency across scales is achieved, as the mechanisms on the microscopic and mesoscopic domains, which drive well-known macroscopic trends in biaxial compression tests, are elucidated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号