首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The knowledge of the surface temperature is important to a range of issues and themes in earth sciences central to urban climatology, global environmental change and human-environment interactions. The study analyses land surface temperature (LST) estimation using temporal ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) datasets (day time and night time) over National Capital Territory Delhi using the surface emissivity information at pixel level. The spatial variations of LST over different land use/land cover (LU/LC) at day time and night time were analysed and relationship between the spatial distribution of LU/LC and vegetation density with LST was developed. Minimum noise fraction (MNF) was used for LU/LC classification which gave better accuracy than classification with original bands. The satellite derived emissivity values were found to be in good agreement with literature and field measured values. It was observed that fallow land, waste land/bare soil, commercial/industrial and high dense built-up area have high surface temperature values during day time, compared to those over water bodies, agricultural cropland, and dense vegetation. During night time high surface temperature values are found over high dense built-up, water bodies, commercial/industrial and low dense built-up than over fallow land, dense vegetation and agricultural cropland. It was found that there is a strong negative correlation between surface temperature and NDVI over dense vegetation, sparse vegetation and low dense built-up area while with fraction vegetation cover, it indicates a moderate negative correlation. The results suggest that the methodology is feasible to estimate NDVI, surface emissivity and surface temperature with reasonable accuracy over heterogeneous urban area. The analysis also indicates that the relationship between the spatial distribution of LU/LC and vegetation density is closely related to the development of urban heat islands (UHI).  相似文献   

2.
Land use and land cover change are of prime concern due to their impacts on CO2 emissions, climate change and ecological services. New global land cover products at 300 m resolution from the European Space Agency (ESA) Climate Change Initiative Land Cover (CCI LC) project for epochs centered around 2000, 2005 and 2010 were analyzed to investigate forest area change and land cover transitions. Plant functional types (PFTs) fractions were derived from these land cover products according to a conversion table. The gross global forest loss between 2000 and 2010 is 172,171 km2, accounting for 0.6% of the global forest area in year 2000. The forest changes are mainly distributed in tropical areas such as Brazil and Indonesia. Forest gains were only observed between 2005 and 2010 with a global area of 9844 km2, mostly from crops in Southeast Asia and South America. The predominant PFT transition is deforestation from forest to crop, accounting for four-fifths of the total increase of cropland area between 2000 and 2010. The transitions from forest to bare soil, shrub, and grass also contributed strongly to the total areal change in PFTs. Different PFT transition matrices and composition patterns were found in different regions. The highest fractions of forest to bare soil transitions were found in the United States and Canada, reflecting forest management practices. Most of the degradation from grassland and shrubland to bare soil occurred in boreal regions. The areal percentage of forest loss and land cover transitions generally decreased from 2000–2005 to 2005–2010. Different data sources and uncertainty in the conversion factors (converting from original LC classes to PFTs) contribute to the discrepancy in the values of change in absolute forest area.  相似文献   

3.
本文利用遥感和GIS技术,分析了岳阳县1993年~2002年土地利用变化及其空间分异特征。研究表明,9年间岳阳县农用地、水域呈减少趋势,建设用地、林地呈增加趋势,其中农用地的减少和林地的增加十分显著;主要转移方向包括农用地向建设用地、林地转移,水域向林地转移等;各类土地利用变化在空间上呈现明显的区域分异;城市化的迅速发展,旅游业的繁荣以及人类生态意识的提高是研究时段内土地利用变化的主要影响因子。  相似文献   

4.
In this study, we explored the spatial and temporal patterns of land cover and land use (LCLU) and population change dynamics in the St. Louis Metropolitan Statistical Area. The goal of this paper was to quantify the drivers of LCLU using long-term Landsat data from 1972 to 2010. First, we produced LCLU maps by using Landsat images from 1972, 1982, 1990, 2000, and 2010. Next, tract level population data of 1970, 1980, 1990, 2000, and 2010 were converted to 1-km square grid cells. Then, the LCLU maps were integrated with basic grid cell data to represent the proportion of each land cover category within a grid cell area. Finally, the proportional land cover maps and population census data were combined to investigate the relationship between land cover and population change based on grid cells using Pearson's correlation coefficient, ordinary least square (OLS), and local level geographically weighted regression (GWR). Land cover changes in terms of the percentage of area affected and rates of change were compared with population census data with a focus on the analysis of the spatial-temporal dynamics of urban growth patterns. The correlation coefficients of land cover categories and population changes were calculated for two decadal intervals between 1970 and 2010. Our results showed a causal relationship between LCLU changes and population dynamics over the last 40 years. Urban sprawl was positively correlated with population change. However, the relationship was not linear over space and time. Spatial heterogeneity and variations in the relationship demonstrate that urban sprawl was positively correlated with population changes in suburban area and negatively correlated in urban core and inner suburban area of the St. Louis Metropolitan Statistical Area. These results suggest that the imagery reflects processes of urban growth, inner-city decline, population migration, and social spatial inequality. The implications provide guidance for sustainable urban planning and development. We also demonstrate that grid cells allow robust synthesis of remote sensing and socioeconomic data to advance our knowledge of urban growth dynamics from both spatial and temporal scales and its association with population change.  相似文献   

5.
This study presents a modified low-cost approach, which integrates the spectral angle mapper and image difference algorithms in order to enhance classification maps for the purpose of monitoring and analysing land use/land cover change between 2000 and 2015 for the Emirate of Dubai. The approach was modified by collecting 320 training samples from QuickBird images with a spatial resolution of 0.6 m, as well as carrying out field observations, followed by the application of a 3?×?3 Soble filter, sieving classes, majority/minority analysis, and clump classes of the obtained classification maps. The accuracy assessment showed that the targeted 2000, 2005, 2010 and 2015 classification maps have 88.1252%, 89.0699%, 90.1225% and 96.0965% accuracy, respectively. The results showed that the built-up area increased by 233.721?km2 (5.81%) between 2000 and 2005 and continues to increase even up and till the present time. The assessment of changes in the periods 2000–2005 and 2010–2015 confirmed that net vegetation area losses were more pronounced from 2000 to 2005 than from 2010 to 2015, dropping from 47,618 to 40,820?km2, respectively. This study is aimed to assist urban planners and decision-makers, as well as research institutes.  相似文献   

6.
The surface fabric of urbanized areas, (i.e. its constituent land covers and land uses) plays an essential role in the generation of the urban/rural temperature differences, i.e. the Urban Heat Island (UHI) effect. Land surface information, derived from satellite imagery, and complementary information such as demographics can be used as the basis for an understanding of the atmospheric and surface thermal variations within cities. The results of comprehensive land surface characterizations of two major Canadian urban areas, the Greater Toronto Area and Ottawa-Gatineau, are described. Spatial information, including land cover fraction maps, land use and its historic changes, population density maps are compared with intra-urban surface temperature variations derived from satellite thermal imagery. Three aspects of the impacts of land cover and land use on urban land thermal characteristics are addressed, namely, (a) the relationships between surface temperature and subpixel land cover and population density (b) intra-city seasonal temperature variations and (c) the intensification of the urban heat island effect due to urban built-up land growth.  相似文献   

7.
南水北调中线工程是我国大规模跨流域调水工程的一部分,开展该区域植被覆盖度变化的研究与分析,对于保护该区域的生态环境及水质具有重要意义。该文以2000年和2009年两期遥感图像为本底数据,利用基于NDVI的像元二分模型对南水北调中线水源区的植被覆盖度进行了估算,并分析了该区植被覆盖度的时空变化特征。结果表明:2000年该水源区植被覆盖度的平均值为67.5%,2009年的平均值达到72%,植被覆盖度总体呈增长趋势;植被覆盖度增幅的空间特征表现为水源区中部地区高,东西部地区相对较低;在不同植被类型中,落叶针叶林的覆盖度平均值增幅最大,草地覆盖度增幅最小;位于水源区的大多数县(市)的植被覆盖度在近十年来都有不同程度的增加,其中柞水县的植被覆盖度平均值增长幅度最大,这与国家实施退耕还林、封山育林、基本农田建设等政策有关。  相似文献   

8.
Studying Changes in Land Use Within the Poyang Lake Region   总被引:1,自引:0,他引:1  
Poyang Lake is the largest freshwater lake in China. Because the lake is faced with a series of ecological and environmental problems, it is important and necessary to study the land use changes in the Poyang Lake region. In this study, Landsat images from 1976, 1989, 1999 and 2009, were used along with other evaluation methods (quantitative analysis of changes in land use, land use dynamic, degree and transfer matrix analyses) to investigate the changes in land use within the Poyang Lake region from 1976 to 2009. Land use was classified into seven types: cropland, woodland, grassland, the water body, construction land, bottomland and unused land. Areas of cropland, bottomland and the water body were decreasing although the area of the water body decreased relatively slowly. However, areas of construction land, grassland, woodland and unused land increased to a certain extent, with unused land increasing the most rapidly given its smaller proportion compared to the other types. All land types in the study region had different levels of conversion between other types of land. As a whole, the decrease in cropland and the increase in construction land, woodland and grassland were caused by human activities and the conservation policies such as Grain-for-Green and “returning farm to lake”. However, the decrease in the water body area was mainly influenced by natural factors and human activities. Changes in the area of bottomland were mainly influenced by water levels and human farming activities.  相似文献   

9.
At the beginning of the new millennium, after a severe drought and destructive floods along the Yangtze River, the Chinese government implemented two large ecological rehabilitation and reforestation projects: the Natural Forest Protection Programme and the Sloping Land Conversion Programme. Using Landsat data from a decade before, during and after the inception of these programmes, we analyze their impacts along with other policies on land use, land cover change (LULCC) in southwest China. Our goal is to quantify the predominant land cover changes in four borderland counties, home to tens of thousands of ethnic minority individuals. We do this in three time stages (1990, 2000 and 2010). We use support vector machines as well as a transition matrix to monitor the land cover changes. The land cover classifications resulted in an overall accuracy and Kappa coefficient for forested area and cropland of respectively 91% (2% confidence interval) and 0.87. Our results suggest that the total forested area observed increased 3% over this 20-year period, while cropland decreased slightly (0.1%). However, these changes varied over specific time periods: forested area decreased between 1990 and 2000 and then increased between 2000 and 2010. In contrast, cropland increased and then decreased. These results suggest the important impacts of reforestation programmes that have accelerated a land cover transition in this region. We also found large changes in LULC occurring around fast growing urban areas, with changes in these peri-urban zones occurring faster to the east than west. This suggests that differences in socioeconomic conditions and specific local and regional policies have influenced the rates of forest, cropland and urban net changes, disturbances and net transitions. While it appears that a combination of economic growth and forest protection in this region over the past 20 years has been fairly successful, threats like drought, other extreme weather events and land degradation remain.  相似文献   

10.
Monitoring agricultural land cover is highly relevant for global early warning systems such as ASAP (Anomaly hot Spots of Agricultural Production), because it represents the basis for detecting production deficits in food security assessment. Given the significant inconsistencies among existing land cover datasets, there is a need to obtain a more accurate representation of the spatial distribution and extent of agricultural area in Africa. In this research, we explore a fusion approach that combines the strength of individual datasets and minimises their limitations. Specifically, a semi-automatic method is developed, relying on multi-criteria analysis (MCA) complemented with manual fine-tuning using the best-rated datasets, to generate two hybrid and static agricultural masks – one for cropland and another for grassland. Following a comprehensive selection of land cover maps, each dataset is evaluated at country level according to five criteria: timeliness, spatial resolution, comparison with FAO statistics, accuracy assessment and expert evaluation. A sensitivity analysis is performed, based on an evaluation of the impact of weight settings on the resulting land cover. The proposed methodology is capable of improving agricultural characterisation in Africa. As a result, two static masks at 250 m spatial resolution for the nominal year 2016 are provided.  相似文献   

11.
Land cover in Kenya is in a state of fl ux at different spatial and temporal scales. This compromises environmental integrity and socioeconomic stability of the population hence increasing their vulnerability to the externalities of environmental change. The Oroba-Kibos catchment area in western Kenya is one locality where rapid land use changes have taken place over the last 30 years. The shrubs, swamps, natural forests and other critical ecosystems have been converted on the altar of agriculture, human settlement, fuel wood and timber. This paper presents the results of a study that aimed at providing spatially-explicit information for effective remedial response through (a) Mapping the land cover; (b) Identifying the spatial distribution of land cover changes; (c) Determining the nature, rates and magnitude of the land cover changes, and; (d) Establishing the drivers of land use leading to land cover changes in Oroba-Kibos catchment area. Bi-temporal Landsat TM imagery, fi eld observation, household survey and ancillary data were obtained. Per-fi eld classifi cation of the Landsat TM imagery was performed in a GIS and the resultant land cover maps assessed using the fi eld observation data. Post-classifi cation comparison of the maps was then done to detect changes in land cover that had occurred between 1994 and 2008. SPSS was used to analyze the household survey data and attribute the detected land cover changes to their causes. The fi ndings showed that 9 broad classes characterize the catchment area including the natural forests, swamps, natural water bodies, woodlands, shrublands, built-up lands, grasslands, bare lands and croplands. Croplands are dominant and accounted for about 65% (57122 ha) of the total land in 1994, which increased at the rate of 0.89% to 73% (64772 ha) in 2008, while natural water bodies has the least spatial coverage accounting for about 0.6% (561 ha) of the total land in 1994, which diminished at the rate of 3.57% to 0.3% (260 ha) in 2008. Climate, altitude, access and rights to land, demographic changes, poverty, political governance, market availability and economic returns are the interacting mix of proximate and underlying factors that drive the land cover changes in Oroba-Kibos catchment area.  相似文献   

12.
粤港澳大湾区已成为世界级城市群为目标的特大城市群。本文利用多期遥感数据,并结合景观格局指数研究大湾区2000—2020年的发展规律。结果表明:①大湾区主要的土地覆盖类型为林地、耕地与居住及建设用地,3种地类总占比多年来均在80%以上;②大湾区的居住及建设用地在20年间增长了115.21%,面积达到9 183.47 km2,是大湾区内面积增长最多、变化速率最快的用地类型;③大湾区内的景观格局破碎度、斑块密度不断降低,景观聚集度与景观丰富程度不断升高,区域景观格局分布状况日趋合理。  相似文献   

13.
高质量发展雄安新区,需要准确掌握雄安新区城市建设和城市布局的开发状况。为此,本文以2016—2019年GF-1影像数据为数据源,使用面向对象K近邻法,对雄安新区土地利用状况进行分类研究,并结合ArcGIS统计研究区土地覆盖变化情况。结果表明:2016—2019年这3年间,建设用地、植被和道路逐年增加,水体和农用地呈下降趋势。本研究成果围绕雄安新区快速发展时期,为准确掌握雄安新区的发展建设情况提供了一定的参考价值。  相似文献   

14.
Main objective of this study was to establish a relationship between land cover and land surface temperature (LST) in urban and rural areas. The research was conducted using Landsat, WorldView-2 (WV-2) and Digital Mapping Camera. Normalised difference vegetation index and normalised difference built-up index were used for establishing the relation between built-up area, vegetation cover and LST for spatial resolution of 30 m. Impervious surface and vegetation area generated from Digital Mapping Camera from Intergraph and WV-2 were used to establish the relation between built-up area, vegetation cover and LST for spatial resolutions of 0.1, 0.5 and 30 m. Linear regression models were used to determine the relationship between LST and indicators. Main contribution of this research is to establish the use of combining remote sensing sensors with different spectral and spatial resolution for two typical settlements in Vojvodina. Correlation coefficients between LST and LST indicators ranged from 0.602 to 0.768.  相似文献   

15.
Detailed spatial information on the presence and properties of woody vegetation serves many purposes, including carbon accounting, environmental reporting and land management. Here, we investigated whether machine learning can be used to combine multiple spatial observations and training data to estimate woody vegetation canopy cover fraction (‘cover’), vegetation height (‘height’) and woody above-ground biomass dry matter (‘biomass’) at 25-m resolution across the Australian continent, where possible on an annual basis. We trained a Random Forest algorithm on cover and height estimates derived from airborne LiDAR over 11 regions and inventory-based biomass estimates for many thousands of plots across Australia. As predictors, we used annual geomedian Landsat surface reflectance, ALOS/PALSAR L-band radar backscatter mosaics, spatial vegetation structure data derived primarily from ICESat/GLAS satellite altimetry, and spatial climate data. Cross-validation experiments were undertaken to optimize the selection of predictors and the configuration of the algorithm. The resulting estimation errors were 0.07 for cover, 3.4 m for height, and 80 t dry matter ha-1 for biomass. A large fraction (89–94 %) of the observed variance was explained in each case. Priorities for future research include validation of the LiDAR-derived cover training data and the use of new satellite vegetation height data from the GEDI mission. Annual cover mapping for 2000–2018 provided detailed insight in woody vegetation dynamics. Continentally, woody vegetation change was primarily driven by water availability and its effect on bushfire and mortality, particularly in the drier interior. Changes in woody vegetation made a substantial contribution to Australia’s total carbon emissions since 2000. Whether these ecosystems will recover biomass in future remains to be seen, given the persistent pressures of climate change and land use.  相似文献   

16.
There have been rapid population and accelerating urban growth with associated changes in land use and soil degradation in northeast China, an important grain-producing region. The development of integrated use of remote sensing, geographic information systems, and combined cellular automata– Markov models has provided new means of assessing changes in land use and land cover, and has enabled projection of trajectories into the future. We applied such techniques to the prefecture-level city of Harbin, the tenth largest city in China. We found that there had been significant losses of the land uses termed “cropland”, “grassland”, “wetland”, and “floodplain” in favour of “built-up land” and lesser transformations from “floodplain” to “forestland” and “water body” over the 18-year period. However, the transition was not a simple process but a complex network of changes, interchanges, and multiple transitions. In the absence of effective land use policies, projection of past trajectories into a balance state in the future would result in the decline of cropland from 65.6% to 46.9% and the increase of built-up area from 7.7% to 23.0% relative to the total area of the prefecture in 1989. It also led to the virtual elimination of land use types such as unused wetland and floodplain.  相似文献   

17.
大尺度土地覆盖数据集在中国及周边区域的精度评价   总被引:7,自引:0,他引:7  
大尺度土地覆盖数据是全球陆地表层过程研究、生态系统评估、环境建模等科学研究的重要基础,研究现有数据集的特点对数据使用者及生产新的数据集都具有指导意义。本研究以中国及周边区域为研究区,根据不同分类体系对地物的定义,研究不同分类体系中对应地物的相关系数,并将所有分类体系转换为IGBP分类体系;然后,从定性和定量两方面分析现有5种土地覆盖数据集(IGBP DISCover、UMD、GLC2000、MOD12Q1和GlobCover 2005)的空间一致性;并利用Google Earth高分影像选取两期验证样本评价5种土地覆盖数据集的精度。结果表明:同种地物在不同土地覆盖数据集之间的空间分布格局差异较大,且不同土地覆盖数据集之间的总体一致性系数较低;5种土地覆盖数据集中,GLC2000的总体精度和Kappa系数均最高,GlobCover 2005的总体精度和Kappa系数均最低。  相似文献   

18.
近10年新疆积雪面积时空变化研究   总被引:1,自引:0,他引:1  
区域尺度积雪信息的时空监测对确定雪灾的影响范围及灾情等级划分具有重要意义。本文利用近10年的MODIS积雪产品,按月最大面积的规则合成;分析了新疆积雪覆盖面积的时空变化特征,结果表明:时间上,新疆积雪面积有减少的趋势。空间上,近10年新疆积雪季节内永久性积雪覆盖区域主要分布在阿勒泰山脉、天山北麓及沿昆仑山脉西南部。其中天山及阿尔泰山之间的河谷及盆地的草原积雪面积波动主导了新疆整体积雪总面积的波动。  相似文献   

19.
三峡库区作为一个特定的经济地理区域,关系我国生态安全和经济社会发展全局,做好三峡库区城镇迁移、迁建、复建等工作,规划一个合理有序的城镇空间,对于落实三峡库区国家战略职能具有重要的先导意义。本研究在地理信息技术的辅助下,以三峡库区重庆段为研究对象,对长寿区进行了实证分析,系统研究了三峡库区特定的地理条件对城镇规划的限制性和适合性,指出了三峡库区各城镇的空间拓展方向和城镇空间发展引导对策,得出研究结果。  相似文献   

20.
郑瑜晗  黄麟  翟俊 《遥感学报》2020,24(7):917-932
陆表覆盖变化影响地表特征从而改变地表能量平衡是理解人类活动对全球气候变化影响的关键环节。选择国际气候谈判主要国家的美国、印度和巴西作为中国的对比国,对比分析不同国别、不同气候带典型陆表覆盖类型的地表反照率时空差异,进而模拟开垦和城市化等陆表覆盖变化对反照率的影响差异。结果表明:(1) 2000年—2015年,中国、美国的地表反照率年际变化存在明显的气候带空间分异特征,中国干旱半干旱区和美国中低纬湿润区表现出降低趋势,而中国亚热带湿润和美国高纬与中部干旱区则表现出明显的升高趋势,印度的地表反照率年际变化呈微弱下降趋势,而巴西为微弱上升趋势。(2)无雪覆盖时,耕地、林地、草地和人造地表反照率具有夏高、冬低的时间变化特征,干旱半干旱区反照率明显高于湿润区。4种类型的国别差异体现在,中国亚热带湿润区地表反照率均以上升为主,干旱半干旱区则相反;美国除耕地在干旱区呈较强的升高趋势外,其余类型基本为降低趋势;印度均表现为降低趋势;巴西则表现为略微升高趋势。(3)与无雪覆盖相比,有雪覆盖时不同陆表覆盖类型地表反照率均有所提高,林地提高幅度最小,约0.06—0.26,耕地提高最大,约为0.17—0.38,且中国林地反照率提高幅度略高于美国。(4)原陆表覆盖为林地时,开垦和城镇化均导致地表反照率升高,且干旱区升高幅度高于湿润区,湿润区的升高幅度随纬度降低而减弱;为草地时,开垦主要在巴西、印度和中、美亚热带湿润区引起地表反照率升高。而城镇化引起的反照率变化则受到原有地表覆盖、季节和气候背景影响存在较复杂的国别和气候带差异。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号