首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 93 毫秒
1.
采用差热分析(DTA),X射线衍射分析(XRID),扫描电镜(SEM)等分析手段研究了TiO2和TiO2 ZrO2两种形核剂对Li2O-A12O3-SiO2(LAS)系微晶玻璃的形核和晶化的影响.结果发现,样品经过不同温度的预形核处理后,采用,TiO2单一形核剂,晶化峰值温度和晶化峰高度的变化较大,而采用Ti2 ZrO2复合形核剂,晶化峰值温度和晶化峰高度的变化较小.当形核时间为2h,两种形核剂样品的最佳形核温度分别为745和760℃.晶化后均可得到纳米结构的β-石英石固溶体晶相,其中采用,TiO2 ZrO2复合形核剂样品的晶粒更细小.研究表明采用复合形核剂的LAS微晶玻璃的形核过程对温度的敏感性小,有利于对形核过程进行控制,同时形核效率高。  相似文献   

2.
F-离子对Li2O-Al2O3-SiO2系微晶玻璃晶化的影响   总被引:5,自引:0,他引:5  
采用差热分析(DTA),X射线衍射分析(XRD),扫描电镜(SEM等分析手段研究了F-离子对Li2O-Al2O3-SiO2系微晶玻璃形核和晶化的影响.结果发现,引入F-离子使得玻璃的析晶峰值温度降低,玻璃的析晶活化能E降低,晶化指数n加大.引入F-离子后,一方面促进了玻璃析晶和晶化,LixAlxSi1-xO2固溶体析出以及LixAlxSi1-xO2固溶体向β-锂辉石固溶体转变加快,晶化后的晶粒尺寸加大,析晶活化能E,晶化指数n与扫描电镜(SEM)分析一致.表明F-离子促进了玻璃晶化和离子扩散.  相似文献   

3.
晶化温度对Li2O-Al2O3-SiO2系微晶玻璃析晶和显微结构的影响   总被引:2,自引:0,他引:2  
赵莹陆雷  张乐军王浩 《材料导报》2007,21(F11):360-362,366
采用差热分析(DTA)、红外光谱分析(IR)、X衍射分析(XRD)、扫描电镜(SEM)等分析手段对Li2O-Al2O3-SiO2系微晶玻璃的析晶和微观结构进行了研究。结果表明:随晶化温度升高,玻璃首先析出β-石英固溶体晶体,晶化温度升高β-石英固溶体向β-锂辉石固溶体转变,晶粒尺寸及含量逐渐增大,但晶化温度过高这种趋势变化不大。最佳的晶化温度为810℃,所制得的微晶玻璃具有低膨胀相的晶体结构,可荻得较好的热膨胀性能。  相似文献   

4.
采用差热分析、X射线衍射分析和扫描电镜观察等测试方法,对以TiO2和ZrO2作为复合晶核剂生成的微晶玻璃摘要的晶化行为进行了研究,并讨论了热处理工艺与晶化行为、力学性能之间的关系。结果表明:随温度升高,玻璃中依次析出镁铝钛酸盐、假蓝宝石、尖晶石、α-堇青石、顽火辉石等晶体。材料力学性能取决于热处理工艺,经800℃、2h和1190℃,1h处理后,所制备的陶瓷试样具有良好的力学性能,抗弯强度可稳定在320MPa以上。  相似文献   

5.
本文利用DTA、XRD和SEM对Li2O-Al2O3-SiO2(以下简称LAS)微晶玻璃核化晶化热处理制度及氟离子在该玻璃体系中的作用进行研究.通过分析得出:含氟LAS玻璃核化温度和晶化温度分别为620℃和710℃,比相同组份的不含氟Li2O-Al2O3-SiO2玻璃核化、晶化温度分别降低了40℃和160℃左右;引入氟离子明显降低LAS玻璃析晶温度,系统的活化能降低约54kJ/mol,当含氟LAS玻璃的核化时间为1h、晶化时间为4hrs,平均微晶颗粒尺寸在50nm左右.  相似文献   

6.
CaO—Al2O3—SiO2系白色微晶玻璃中的晶相及其演变   总被引:9,自引:0,他引:9  
应用差热分析和X射线衍射谱研究了若干以ZnS为晶核剂的R2O-CaO-Al2O3-SiO2系白色微晶玻璃。根据差热结果确定了四个不同的晶化处理温度。晶化结果表明:本系统玻璃在较低温度下即开始晶体,且均以α-硅灰石为主晶相,这可用ZnS与α-硅灰石间晶核常数的匹配来解释。  相似文献   

7.
BaO-Al2O3-SiO2系微晶玻璃的研究进展和应用   总被引:1,自引:0,他引:1  
以钡长石(BaAl2Si2O8)为主晶相的BaO-AlO3-SiO2(BAS)系微晶玻璃具有高的耐热温度、机械强度,具有较好的抗氧化性能和抗碱蚀能力,具有高的化学稳定性,与多种热、机械增强材料都有良好的化学相容性.而且,单斜钡长石的电绝缘和介电性能良好.因此,BAS系微晶玻璃作为高温结构材料和功能陶瓷材料均有相当多的应用.本文在评述BAS系微晶玻璃的不同制备工艺、加速六方钡长石→单斜钡长石晶型转变的不同手段与机理的基础上,介绍了BAS系微晶玻璃作为结构材料和功能材料的多种应用,指出了国内外的研究差距,并作出了研究展望.  相似文献   

8.
9.
F-离子对Li2O-Al2O3-SiO2系微晶玻璃晶化的影响   总被引:2,自引:1,他引:2  
采用差热分析(DTA),X射线衍射分析(XRD),扫描电镜(SEM)等分析手段研究了F^-离子对Li2O—A12O3-SiO2系微晶玻璃形核和晶化的影响。结果发现,引入F^-离子使得玻璃的析晶峰值温度降低,玻璃的析晶活化能E降低,晶化指数n加大。引入F^-离子后,一方面促进了玻璃析晶和晶化,LixAlxSi1-xO2固溶体析出以及LixAlxSi1-xO2固溶体向β-锂辉石固溶体转变加快,晶化后的晶粒尺寸加大,析晶活化能E,晶化指数n与扫描电镜(SEM)分析一致。表明F^-离子促进了玻璃晶化和离子扩散。  相似文献   

10.
CaO-MgO-Al2O3-SiO2-F系可切削微晶玻璃的晶化机理研究   总被引:3,自引:0,他引:3  
在CaO MgO Al2 O3 SiO2 F系可切削微晶玻璃体系中 ,本研究分析了K2 O和ZrO2 对玻璃析晶和显微结构的影响 ,探讨了晶化机理。K+ 促使云母相的生成和球晶的形成 ;晶化过程中 ,云母和顽辉石互为外延生长 ,使球晶中条状晶解离为片状晶。ZrO2 与F- 一起促使玻璃晶化后形成棒状云母晶粒 ,并具有晶粒长径比大、相互交错的显微结构  相似文献   

11.
12.
B2O3-Al2O3-SiO2系微晶玻璃析晶动力学研究   总被引:1,自引:0,他引:1  
采用差示扫描量热(DSC)分析法对B2O3-Al2O3-SiO2系统微晶玻璃的析晶动力学参数进行了测定,研究了该系统微晶玻璃的析晶动力学。结果表明:随着B2O3/SiO2比的降低,该系统玻璃的析晶活化能E呈先升高后降低的变化趋势,当B2O3/SiO2比为11:5时,析晶活化能最小,Emin=375.4kJ/mol,晶化指数n则先减小后增大,但均〉4,表明该系统玻璃可整体析晶。  相似文献   

13.
刘树江  卢安贤  肖卓豪  杨舟 《材料导报》2005,19(Z1):338-340
通过传统熔体冷却法制得了以P2O5和TiO2为晶核剂的Li2O-Al2O3-SiO2系统基础玻璃,并经过热处理制得了微晶玻璃.利用红外光谱分析、X射线衍射分析和扫描电子显微镜等对晶化试样的物相和显微结构进行了研究,着重探索了不同晶核剂对玻璃析晶、微晶玻璃结构、微晶玻璃力学和热学性能的影响.结果表明:TiO2更有利于玻璃析晶,但以P2O5为晶核剂的微晶玻璃具有更好的力学和热学性能.  相似文献   

14.
王方  戴金辉  沈震雷 《材料导报》2011,25(20):105-108
采用高温熔融法制备了MgO-Al2O3-SiO2系堇青石微晶玻璃,采用DTA、XRD等对试样的热处理工艺和力学性能进行了分析,详细讨论了晶化温度、晶化时间、核化温度及核化时间对该系微晶玻璃力学性能及显微结构的影响。结果表明,对于实验研究的MgO-Al2O3-SiO2系玻璃,于600℃核化处理4h,于1100℃晶化处理2h,可以得到具有较好性能的堇青石基微晶玻璃,其抗弯强度可达182MPa。  相似文献   

15.
BaO-Al2O3-SiO2系微晶玻璃析晶机理研究   总被引:1,自引:0,他引:1  
利用烧结法制备化学计量比和高Ba含量的两组BaO-Al2O3-SiO2(BAS)系微晶玻璃, 采用等转化率法计算玻璃粉的活化能随析晶过程的变化, 利用线性回归的方法确定最概然析晶机理函数, 进而对比研究添加ZrO2和提高Ba含量对BAS系微晶玻璃析晶过程的影响. 结果表明, 4种成分的BAS系玻璃的最概然析晶机理函数均为SB(m, n)函数, 析晶过程中存在自催化的相变机制. 在化学计量比的BAS系玻璃中添加ZrO2或者提高Ba含量, 对六方钡长石的析出表现为促进作用, 并且随着温度的降低或者析晶过程的进行, 促进效果更加明显. 在高Ba含量的BAS系玻璃中添加ZrO2对六方钡长石的析出表现为抑制作用, 并且随着温度的升高抑制效果更加明显.  相似文献   

16.
TiO2对CaO-Al2O3-SiO2系玻璃晶化机理的影响   总被引:6,自引:0,他引:6  
使用差热分析(DTA)方法研究了TiO2对CaO-Al2O3-SiO2系玻璃晶化机理的影响,发现在CaO-Al2O3-SiO2系玻璃中,引入TiO2有助于玻璃网络聚合程度的降低,从而导致玻璃的粘度减小,转变温度Tg和析晶峰温度Tp的降低.玻璃的析晶难易程度和析晶峰温度的高低不存在相互对应关系.CaO-Al2O3-SiO2系玻璃中,不管是否加入TiO2,均以表面晶化为主,TiO2的晶核剂效果不显著.充分的核化热处理也不能促使含TiO2的CaO-Al2O3-SiO2系玻璃发生体积晶化,TiO2的含量越高,核化热处理后玻璃的表面晶化效果越显著.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号