首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The plastic deformation and recrystallization behavior of the commercial magnesium alloys WE54 was analyzed using the strain rates 0.01, 0.1, 1, and 5 s?1 in the temperature range from 400 to 550 °C. The dependence of the flow stress on the temperature and the strain rate was modeled using the Garofalo hyperbolic sine equation. Thereby, the activation energy for plastic deformation of 224 kJ mol?1 was determined considering the flow stress at a strain of 0.5. The analysis revealed a stress exponent of 3.2. Furthermore, processing maps were generated by plotting the efficiency of power dissipation and the instability parameter considering different instability criteria as a function of the temperature and the strain rate. Depending on these parameters the extent of the recrystallization and the localization of the nucleation varied, significantly. At 400 °C, the recrystallization is very limited and was observed at grain boundaries (GB), shear bands (SB), and twin boundaries (TW). Increasing temperatures result in an increased recrystallized fraction, while lower strain rates promote grain boundary nucleation and reduce the amount of SBN and TW. The prediction of the processing map was verified by large scale extrusion trials, which proof that the evaluation of hot compression data can provide an effective tool to establish viable processing parameters.  相似文献   

2.
In the present study, the texture evolution, microstructure and mechanical behavior of WE43 magnesium sheet at high strain rates are investigated. Samples cut along the rolling direction (RD), 45° from the RD, transverse direction (TD) and perpendicular to the RD-TD plane were tested at strain rates of 800, 1200 and 1400 s−1 using Split Hopkinson Pressure Bar. It is observed that after shock loading, the initial weak texture converts to a weak (00.2) basal texture in all samples. Besides, it is found that the strength and ductility increase and twinning fraction decreases with increase in strain rate. Moreover, another effect of increase in strain rate is found to be the higher activation of pyramidal 〈c + a〉 slip systems. In addition, degree of stress and strain anisotropy is low particularly at higher strain rates, which is mainly related to the weak initial texture of the samples. A viscoplastic self-consistent model with a tangent approach is used to analyze the deformation mechanism during shock loading.  相似文献   

3.
This paper describes the main results from an investigation into the strength and low‐cycle fatigue (LCF) behavior of a rolled plate of WE43 Mg alloy in its T5 condition at room temperature. The alloy was found to exhibit small tension/compression yield asymmetry and small anisotropy being stronger in transverse direction (TD) than in rolling direction (RD) along with some anisotropy in strain hardening. The LCF tests were conducted under strain‐controlled conditions with the strain amplitudes ranging from 0.6% to 1.4% without the mean strain component. While the stress amplitudes during the LCF were higher for tests along TD than RD, the LCF life was similar for both directions. As revealed by electron microscopy, the fractured surfaces under tension consisted mainly of microvoid coalescence with some transgranular facets, while those fractured in LCF showed a combination of intergranular fracture and transgranular facets with minor content of microvoid coalescence.  相似文献   

4.
Mg alloys with high Al contents have superior corrosion resistance in aqueous environments, but poor cytocompatibility compared to that of pure Mg. We have silanized the cast AZ91 alloy to improve its cytocompatibility using five different silanes: ethyltriethoxysilane (S1), 3-aminopropyltriethoxysilane (S2), 3-isocyanatopyltriethoxysilane (S3), phenyltriethoxysilane (S4) and octadecyltriethoxysilane (S5). The surface hydrophilicity/hydrophobicity was evaluated by water contact angle measurements. X-ray photoelectron analysis was performed to investigate the changes in surface states and chemical composition. All silane reagents increased adsorption of the albumin to the modified surface. In vitro cytocompatibility evaluation revealed that silanization improved cell growth on AZ91 modified by silane S1. Measurement of the concentration of Mg2+ ions released during the cell culture indicated that silanization does not affect substrate degradation.  相似文献   

5.
Abstract

Mg alloys with high Al contents have superior corrosion resistance in aqueous environments, but poor cytocompatibility compared to that of pure Mg. We have silanized the cast AZ91 alloy to improve its cytocompatibility using five different silanes: ethyltriethoxysilane (S1), 3-aminopropyltriethoxysilane (S2), 3-isocyanatopyltriethoxysilane (S3), phenyltriethoxysilane (S4) and octadecyltriethoxysilane (S5). The surface hydrophilicity/hydrophobicity was evaluated by water contact angle measurements. X-ray photoelectron analysis was performed to investigate the changes in surface states and chemical composition. All silane reagents increased adsorption of the albumin to the modified surface. In vitro cytocompatibility evaluation revealed that silanization improved cell growth on AZ91 modified by silane S1. Measurement of the concentration of Mg2+ ions released during the cell culture indicated that silanization does not affect substrate degradation.  相似文献   

6.
Rare earths containing magnesium alloy, WE54, exhibited a marginally higher in-vitro degradation resistance than that of pure magnesium. Heat-treatment procedure had an influence on the degradation behaviour. However, comparing with AZ91 magnesium alloy the in-vitro degradation resistance of WE54 magnesium alloy was significantly lower, which suggests that the passivating capacity of rare earths is inferior to that of aluminium under in-vitro condition.  相似文献   

7.
In this study, microfiber films were used as scaffolds for the purpose of vascular tissue engineering. The microfiber films were prepared by electrospinning of poly (l-lactide) (PLLA) and polyvinyl pyrrolidone (PVP). PLLA and PVP with different ratios were blended with dichloromethane as a spinning solvent at room temperature. The properties of the composite microfiber films were investigated by differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and contact angle measurement. The SEM images showed that the morphology of the microfiber films was mainly affected by the weight ratios of PLLA/PVP. The DSC results demonstrated that PLLA and PVP mixed uniformly. And the hydrophilicity of the films measured increased along with the decrease of the PLLA/PVP ratio. Vascular smooth muscle cells (VSMCs) were used to test the cytocompatibility. Cell morphology and cell proliferation were measured by SEM, laser scanning confocal microscopy (LSCM) and MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay after 2, 4, 6 days of culture. The results indicated that the cell morphology and proliferation on the composite films were better than that on the pure PLLA film. Furthermore, morphology and proliferation of VSMCs became better with decreasing of the weight ratio of PLLA/PVP. In addition, adhesion of platelet on the films was observed by SEM. The SEM images showed that the number of adhered platelets decreased with increment of PVP content in the films. The electrospinning microfiber composite films of PLLA and PVP would have potential use as the scaffolds for vascular tissue engineering.  相似文献   

8.
As part of a broader effort to establish processing-structure–property relationships in PLLA/nHA, which is currently under consideration for bioresorbable scaffolds for bone repair, hot stage optical microscopy and differential scanning calorimetry have been used to investigate the solidification behavior of a series of medical grade PLLA/nHA nanocomposites. The presence of the nHA resulted in an increase in the number of spherulites per unit volume during isothermal crystallization, but there was a substantial decrease in the spherulite growth rate with increasing nHA content in the temperature range 100–130 °C, argued to be associated with a significant increase in the melt viscosity in the presence of the nHA. The consequences for the global solidification rates and the phase structure of the PLLA/nHA nanocomposites are discussed.  相似文献   

9.
李杰  张会臣  高玉周 《功能材料》2012,43(22):3063-3069
通过微弧氧化技术在MB8镁合金表面形成微细表面结构,再利用自组装方法在微弧氧化层表面制备1H,1H,2H,2H-全氟葵烷基三氯硅烷(FDTS)自组装分子膜。采用扫描电镜、表面粗糙度仪、X射线衍射仪、表面硬度仪、接触角测量仪和UMT-2型摩擦磨损试验机评价膜层形貌结构、力学特性、润湿性及其微摩擦学特性。结果显示,镁合金表面经微弧氧化处理和自组装分子膜修饰后,表面润湿性经历了由亲水到超亲水再到超疏水的转变过程。超疏水表面的获得是由微弧氧化处理得到的表面粗糙结构和低表面能物质自组装分子膜共同作用的结果。对试样进行摩擦磨损测试的结果显示,致密层和疏松层以及经自组装分子膜修饰后的膜层均具有比镁合金基底更好的抗磨性能;基于自组装技术制备的疏水、超疏水表面形成的边界润滑膜在一定载荷条件下均能有效地减少基底的摩擦系数,边界润滑膜失效后,基底表面特性占主导地位。  相似文献   

10.
11.
This paper describes and compares the superplastic behaviour and microstructural evolution of twin roll cast AZ91 and WE43 rolled sheet alloys. Tests were carried out in uniaxial tension on both alloys across a range of temperatures (300 °C–525 °C) and strain rates (1?10‐4 s‐1–1?10‐1 s‐1). In the case of WE43 gas bulge testing was employed at 400 °C and 0.6 MPa to offer a better analogy to superplastic forming than uniaxial tensile testing. Elongations of over 400 % were observed within WE43 when tested at 450 °C and 1?10‐3 s‐1 strain rate, and over 200 % within AZ91 when tested at 350 °C and 1?10‐3 s‐1 strain rate. A peak cone height of 41 mm was achieved with WE43 at a temperature of 400 °C and pressure of 0.6 MPa. Electron back scattered detection technique was employed to analyse the microstructural evolution of the two alloys during the forming process. Both WE43 and AZ91 were observed to undergo dynamic recrystallization during elevated temperature tensile testing and failed at low strain rates mainly by means of coalescence of cavitation, in the case of AZ91 at high strain rates cracking of Al12Mg17 intermetallic particles was the dominating failure mechanism. Both alloys were seen to achieve good levels of superplastic ductility over 200 % elongation, which would be industrially useful in niche vehicle and aerospace manufacturing.  相似文献   

12.
The high temperature forming behavior of WE54 magnesium alloy is studied by means of compression and tension tests. Metallographic investigation was performed to evaluate the heterogeneous deformation of the compression samples at high temperature. Dynamic recrystallization was found to be related to the amount of deformation in the various regions of the compression sample. The compression data allowed determination of the Garofalo equation describing the hot deformation behavior. The parameters n and Q, stress exponent and activation energy, of this equation were 4.4 and 237 kJ/mol respectively. This equation was used to predict the formability behavior for the hot rolling process and also to determine the maximum forming efficiency and stability of the alloy. The optimum rolling temperature was found to be 520 °C.  相似文献   

13.
In the present work, the effect of Cd on the microstructure, mechanical properties and general corrosion behaviour of AZ91C alloys was investigated. Addition of Cd was found not to be efficient in modifying/refining the microstructure or β-phase. A morphology change in β-phase from fine continuous precipitates to discontinuous β-phase upon the addition of Cd was observed. A marginal increment in mechanical properties was observed. General corrosion behaviour was followed with weight loss measurements, potentiostatic polarisation studies and surface studies in 3.5% sodium chloride solution and 3.5% sodium chloride with 2% potassium dichromate solution. Cd addition deteriorated the corrosion behaviour of AZ91C. This behaviour was attributed to the formation of chunks of β-phase upon the addition of Cd. AZ91C with refined β-phase distribution, performed rather better in the NaCl solutions.  相似文献   

14.
为了研究ZK60镁合金的热变形行为,采用Gleebe-1500热模拟机在变形温度为423~673K、应变速率为0.001~10s-1条件下对合金进行的热压缩试验.分析合金流变应力与应变速率、变形温度之间的关系,通过引入Z参数建立合金流变应力本构方程,并观察合金变形过程中的显微组织演变.结果表明:变形温度低于473K且应变速率大于0.1s-1时试样发生宏观开裂;在变形温度较高和应变速率较低时,合金真应力-真应变曲线具有动态再结晶特征.随变形温度升高和应变速率的降低流变应力减小,热压缩后的组织中再结晶现象越明显;应变速率越高,再结晶晶粒越细小.  相似文献   

15.
Metadynamic recrystallization (MDRX) behavior of AZ61 magnesium alloy and its effects on flow behavior and microstructure evolution have been investigated in this study. Towards this end, a set of double-hit hot compression tests was conducted under strain rate of 0.1 s−1 at 400 °C. To differentiate the static and metadynamic recrystallization dominant strain regions, the first stage of deformation was carried out up to the different pre-strains with a constant inter-pass annealing time of 200 s. The results indicated that the MDRX is predominant recrystallization mechanism where the pre-strains are higher than 0.35. Furthermore, to investigate the influence of MDRX on subsequent flow behavior and the related microstructure, an elaborated inter-pass annealing treatment was executed employing a range of inter-pass annealing time (2–500 s). The results show that the progress of MDRX leads to an increase in the flow stress as well as the rate of work hardening encountered in the subsequent deformation. Additionally, the microstructural examinations confirm that the observed hardening phenomenon is a consequence of grain growth evolved from MDRX and its direct effect on the onset of dynamic recrystallization at the second stage of deformation.  相似文献   

16.
为了改善左旋聚乳酸(PLLA)的降解性,采用溶液共混法将PLLA和MgO纳米颗粒(MgO-NPs)进行复合,制备了一种具有良好力学性能的骨修复复合材料.结果显示:改性MgO纳米颗粒(g-MgO-NPs)在PLLA基体中的分散效果及界面结合性比未改性的好.4%(质量比)g-MgO-NPs的添加量使薄膜的拉伸强度从10.6 MPa增大到30.1 MPa,断裂伸长率从71%减小为59%,并使薄膜降解后的pH值趋于稳定,基本接近生理盐水的pH值.由此表明:g-MgO-NPs在一定程度上能改善聚乳酸复合膜的降解性及其力学性能.  相似文献   

17.
Tensile and fatigue behavior of AZ91D magnesium alloy   总被引:3,自引:0,他引:3  
  相似文献   

18.
19.
20.
Annealing behavior of a modified 5083 aluminum alloy   总被引:1,自引:0,他引:1  
The annealing behavior of a modified 5083 aluminum alloy was studied in the temperature range of 125–375 °C with different holding times. The results shown that the annealing temperature was more sensitive to the mechanical and corrosion resistance properties compared with the annealing holding time. The mechanical and corrosion resistance properties depend on annealing treatment due to different dislocation configuration in the matrix and the second phase interface, annealing temperature and time have been optimized for both of those properties improvement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号