首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As conventional flash memory is approaching its fundamental scaling limit, there is an urgent demand for an alternative nonvolatile memory technology at present. Resistance-switching random access memory has attracted extensive interests due to its nonvolatile nature, good scalability, and simple structure. In this work, TiN/ZnO:Mn/Pt junctions, which employ a conductive compound TiN as the top electrode to replace regular metal electrodes, were fabricated and investigated for nonvolatile resistive memory applications. These junctions exhibit bistable resistance state at room temperature, and the devices can be reproducibly switched between the two resistance states by applying bidirectional voltage biases. Moreover, both resistance states are demonstrated to retain for more than 10(4) s without electrical power, demonstrating a nonvolatile nature of the memory device. The mechanism of resistance switching effects in TiN/ZnO:Mn/Pt junctions is interpreted in terms of the drift of oxygen vacancies and the resultant formation/annihilation of local conductive channels through ZnO:Mn/Pt Schottky barrier.  相似文献   

2.
The 80-nm-thickness BaTiO3 (BT) thin film was prepared on the Pt/Ti/SiO2/Si substrate by the RF magnetron sputtering technique. The Pt/BT/Pt/Ti/SiO2/Si structure was investigated using X-ray diffraction and scanning electron microscopy. The current-voltage characteristic measurements were performed. The bipolar resistive switching behavior was found in the Pt/BT/Pt cell. The current-voltage curves were well fitted in different voltage regions at the high resistance state (HRS) and the low resistance state (LRS), respectively. The conduction mechanisms are concluded to be Ohmic conduction and Schottky emission at the LRS, while space-charge-limited conduction and Poole-Frenkel emission at the HRS. The electroforming and switching processes were explained in terms of the valence change mechanism, in which oxygen vacancies play a key role in forming conducting paths.  相似文献   

3.
Kim KM  Han S  Hwang CS 《Nanotechnology》2012,23(3):035201
Electronic bipolar resistive switching and its degradation in the Pt/TiO2/Pt structure were studied. The electronic bipolar switching was induced from the asymmetric trap distribution of the structure under its unipolar reset state. The imbalanced migration of oxygen accompanied by electronic switching significantly degrades switching endurance. Instead, the anti-serial connection of Pt/TiO2/Pt cells resulted in substantial improvements in endurance, underscoring the importance of vacancy migration in device reliability. In addition, the independent control of resistance states of the two connected cells provides the freedom to control resistance ratio, switching direction, and reliability.  相似文献   

4.
The effect of Pt and Cu electrodes on the resistive switching properties and failure behaviors of amorphous ZrO_2 ?lms were investigated. Compared with Cu/ZrO_2/Pt structures, the Pt/ZrO_2/Pt structures exhibit better resistive switching properties such as the higher resistance ratio of OFF/ON states, the longer switching cycles and narrow distribution of OFF state resistance(Roff). The switching mechanism in the Pt/ZrO_2/Pt structure can be attributed to the formation and rupture of oxygen vacancy ?laments; while in the Cu/Zr O2/Pt structure, there exist both oxygen vacancy ?laments and Cu ?laments. The formation of Cu?laments is related to the redox reaction of Cu electrode under the applied voltage. The inhomogeneous dispersive injection of Cu ions results in the dispersive Roff and signi?cant decrease of operate voltage.Schematic diagrams of the formation of conductive ?laments and the failure mechanism in the Cu/ZrO_2/Pt structures are also proposed.  相似文献   

5.
Kim KM  Choi BJ  Lee MH  Kim GH  Song SJ  Seok JY  Yoon JH  Han S  Hwang CS 《Nanotechnology》2011,22(25):254010
The detailed mechanism of electronic bipolar resistance switching (BRS) in the Pt/TiO(2)/Pt structure was examined. The conduction mechanism analysis showed that the trap-free and trap-mediated space-charge-limited conduction (SCLC) governs the low and high resistance state of BRS, respectively. The SCLC was confirmed by fitting the current-voltage characteristics of low and high resistance states at various temperatures. The BRS behavior originated from the asymmetric potential barrier for electrons escaping from, and trapping into, the trap sites with respect to the bias polarity. This asymmetric potential barrier was formed at the interface between the trap layer and trap-free layer. The detailed parameters such as trap density, and trap layer and trap-free layer thicknesses in the electronic BRS were evaluated. This showed that the degradation in the switching performance could be understood from the decrease and modified distribution of the trap densities in the trap layer.  相似文献   

6.
Six decades of research on ZnO has recently sprouted a new branch in the domain of resistive random access memories. Highly resistive and c-axis oriented ZnO thin films were grown by us using d.c. discharge assisted pulsed laser deposition on Pt/Ti/SiO2/Si substrates at room temperature. The resistive switching characteristics of these films were studied in the top-bottom configuration using current-voltage measurements at room temperature. Reliable and repeated switching of the resistance of ZnO thin films was obtained between two well defined states of high and low resistance with a narrow dispersion and small switching voltages. Resistance ratios of the high resistance state to low resistance state were found to be in the range of 2–5 orders of magnitude up to 20 test cycles. The conduction mechanism was found to be dominated by the Ohmic behaviour in low resistance states, while Poole-Frenkel emission was found to dominate in high resistance state. The achieved characteristics of the resistive switching in ZnO thin films seem to be promising for nonvolatile memory applications.  相似文献   

7.

The present study reports the role of zinc oxide nanoparticles (ZnO NPs) embedded in graphene oxide (GO)-based RRAM for non-volatile memory applications. GO thin film embedded with different concentrations of ZnO NPs was deposited on bottom electrode, i.e., indium tin oxide (ITO) coated glass. Thermal evaporation technique was used for the fabrication of top electrodes for electrical measurements. Structural and morphological studies of synthesized GO and ZnO NPs were done by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). Switching characteristics of the RRAM devices were investigated using electrical measurements. It has been observed that the optimized concentration of ZnO NPs (20%) shows stable switching behavior with low SET (??0.61 V) and RESET (+?0.65 V) voltages as compared to pure GO devices. The switching of the fabricated memory devices from high resistance state (HRS) to low resistance state (LRS) has been found due to conductive filament formed between top and bottom electrodes. This conductive filament has been confirmed by the change in resistance as a function of temperature. The Al/GO-ZnO(20%)/ITO devices show stable endurance behavior for >?50 cycles and retention behavior for >?4?×?103 s. In HRS, the dominated conduction mechanism was found to be space-charge limited conduction (SCLC), whereas in LRS, the Ohmic conduction mechanism was observed. The incorporation of ZnO NPs increased the number of oxygen vacancies in switching layer which eventually enhanced the formation of conductive filament. This phenomenon has been confirmed using XPS characterization of the switching layer. These optimized concentrations of ZnO embedded in GO switching layers provide a way for future low power non-volatile memory devices.

  相似文献   

8.
This work investigates high-quality bottom electrode and piezoelectric film used in a thin-film bulk acoustic resonator (TFBAR) device. The titanium (Ti) seeding layer and platinum (Pt) bottom electrode were deposited on silicon substrates by DC sputtering using a dual-gun system. Zinc oxide (ZnO) was then deposited onto the Pt bottom electrode by RF magnetron sputtering. Field-emission scanning electron microscopy (SEM), atom force microscopy (AFM) and the four-point probe method showed that the Pt bottom electrode deposited on the Ti seeding layer exhibited favorable characteristics, such as a crystallite size of less than 10 nm, a surface roughness of 0.69 nm and a sheet resistance of 2.27 Ω/□. The ZnO thin film with a highly c-axis-preferred orientation (FWHM = 0.28°) and a roughness of 6.22 nm was investigated by X-ray diffraction (XRD) and AFM analysis, respectively. The bottom electrode with a low resistance and the highly crystalline ZnO thin film will contribute significantly to the favorable characteristics of the FBAR devices.  相似文献   

9.
A distinct unipolar but single-polarity resistive switching behavior is observed in a TiO(x)/Pt/TiO(x) trilayer structure, formed by thermal oxidation of a Ti/Pt/Ti stack. As a comparison, a memory device with a single TiO(x) active layer (without addition of Pt midlayer) is also fabricated but it cannot perform resistive switching. Energy band diagrams are illustrated to realize the modulation of Schottky barrier junctions and current conduction in TiO(x)-based devices under various biasing polarities. Introduction of the Pt midlayer creates two additional Schottky barriers, which mediate the band bending potential at each metal-oxide interface and attains a rectifying current conduction at the high-resistance state. The rectifying conduction behavior is also observed with an AFM-tip as the top electrode, which implies the rectifying property is still valid when miniaturizing the device to nanometer scale. The current rectification consequently leads to a single-polarity, unipolar resistive switching and electrically rewritable performance for the TiO(x)/Pt/TiO(x) device.  相似文献   

10.
Zhuge F  Peng S  He C  Zhu X  Chen X  Liu Y  Li RW 《Nanotechnology》2011,22(27):275204
We report an improvement in minimizing the dispersion of resistive switching (RS) parameters such as ON/OFF state resistances and switching voltages of Cu/ZnO/Pt structures in which ZnO films have been deposited at elevated temperature with N doping. This deposition process can enlarge the ZnO grain size and lessen grain boundaries while maintaining a high initial resistance since ZnO naturally shows n-type conductivity and N is a p-type dopant but with a low solubility. Cu filaments with a diameter of 15?nm are found to form at the ZnO grain boundaries. Therefore, fewer grain boundaries could depress the randomicity of the formation/rupture of Cu filaments and result in more stable RS performances. Such memory devices show a fast programming speed of 10?ns.  相似文献   

11.
《Materials Letters》2001,49(2):122-126
An asymmetric behavior of P–E response was observed in Ni/Pb1.1(Zr0.3Ti0.7)O3/Pt multilayer thin films where Ni was used as top electrode. This interesting phenomenon was investigated by comparative analysis of the hysteresis loops and dynamic pyroelectric responses. The PZT thin films were prepared under the same conditions but different Ni and Pt top electrodes were used in the hysteresis loop measurement, and the Pt was used as the common bottom electrode. It is believed that this asymmetric behavior in hysteresis loop is originated from the strong domain pinning near the top Ni electrode. Dynamic pyroelectric response to 633 nm radiation of the Ni/Pb1.1(Zr0.3Ti0.7)O3/Pt thin films with polarization up and down was carried out. Higher dynamic pyroelectric response was observed in the positively poled film, in which the direction of the polarization was from the top to bottom electrode. It provides further evidence that the domain pinning near the top electrode dominates the asymmetric switching behavior.  相似文献   

12.
The titania showing reversible resistive switching are attractive for today's semiconductor technology in nonvolatile random-access memories. A novel fabrication method for titania resistive switching device with vertical structure is proposed. First, the Pt electrode was fabricated the bottom using conventional photolithography and chemical etching technique. Next, the titania thin films with the thickness about 50 nm was deposited on the bottom electrode by electron beam evaporation (EBE). Then, the trench of photoresist for electrode deposit was etched with mild chemical process to preserve the original structure of titania layer. After that, the platinum was deposited in the trench of photoresist using ion sputter. A final lift-off process to define the Pt top electrodes was performed with acetone in an ultrasonic bath to remove the resist. The resistive bistability was observed in this device. The on-threshold voltage is +1.5 V and the off-threshold voltage is -0.6 V. The resistance ratio between the two stable states of the device including Al electrode is approximately 1 x 10(3), the state is nonvolatile and the retention-time test performed over an hour in sweeping mode measurement. The results indicate the forming and rupture of conductive channel relate to the defects and distributing of oxygen vacancy. This method is low-cost, high-yielding, and easy to implement, which is applicable to the fabrication of nonvolatile memories.  相似文献   

13.
An Ag/ZnO/Pt memory device, which has much better resistive switching behaviour than Pt/ZnO/Pt device was demonstrated. The detailed resistive mechanisms for the Pt/ZnO/Pt and the Ag/ZnO/Pt systems are proposed and investigated. Microstructures are observed by transmission electron microscope (TEM), indicating that the formation of conducting path for both systems is different. For the Pt/ZnO/Pt device, the conductive filament path is constructed by the oxygen vacancies from top to bottom electrodes under a larger enough bias at a forming process. For the Ag/ZnO/Pt device, the filament path was grown by oxygen vacancies combined with an internal diffusion of Ag atoms under a large bias and can provide the lowest energy barrier for electrons transported between two electrodes during set and reset processes, which reduces formation of other conducting paths after each switching. Accordingly, the stable switching performance of the Ag/ZnO/Pt device can be achieved over 100 cycles even the thickness of ZnO film <25 nm.  相似文献   

14.
采用脉冲激光沉积法(PLD),以Pt(111)/Ti/SiO2/Si为衬底,制备了具有电阻转变特性的TiO2薄膜.X射线衍射(XRD)分析未发现明显的TiO2结晶峰,薄膜呈纳米晶或非晶态.扫描电子显微镜(SEM)及原子力显微镜(AFM)分析表明,TiO2薄膜表面平整、光滑致密.电学测试结果表明,TiO2薄膜具有明显的单极性电阻转变特性,高低阻态比值达到104.高阻态下薄膜的导电过程可用空间电荷限制电流模型解释,过程中存在软击穿现象.在此基础上,对薄膜中丝导电通道的产生及熔断过程进行了初步分析.  相似文献   

15.
以Pt/Ti/SiO2/Si为衬底,制备了具有电阻转变特性的Ti/La0.7Ca0.3MnO3(LCMO)/Pt结构器件.X射线衍射分析表明LCMO薄膜呈纳米晶或非晶态,扫描电子显微镜及原子力显微镜分析表明LCMO薄膜表面平整、光滑致密.电学测试结果表明Ti/LCMO/Pt结构具有明显的双极型"负"电阻转变特性,低电阻态的导电过程为空间电荷限制电流机制,高电阻态的导电过程为Poole-Frenkel发射机制.利用氧化还原反应的随机性和TiOx中间层空间分布的不均匀性,定性地解释了高电阻态的不稳定性以及电流-电压曲线上的电流突变现象.  相似文献   

16.
Li Y  Long S  Lv H  Liu Q  Wang Y  Zhang S  Lian W  Wang M  Zhang K  Xie H  Liu S  Liu M 《Nanotechnology》2011,22(25):254028
The stabilization of the resistive switching characteristics is important to resistive random access memory (RRAM) device development. In this paper, an alternative approach for improving resistive switching characteristics in ZrO(2)-based resistive memory devices has been investigated. Compared with the Cu/ZrO(2)/Pt structure device, by embedding a thin TiO(x) layer between the ZrO(2) and the Cu top electrode, the Cu/TiO(x)-ZrO(2)/Pt structure device exhibits much better resistive switching characteristics. The improvement of the resistive switching characteristics in the Cu/TiO(x)-ZrO(2)/Pt structure device might be attributed to the modulation of the barrier height at the electrode/oxide interfaces.  相似文献   

17.
This study reports controlled single conductive paths found in resistive random access memory (ReRAM) formed by embedding Pt nanoparticles (Pt NPs) in NiO film. Homogeneous Pt NPs produced and placed by ferritin protein produce electric field convergence which leads to controlled conductive path formation. The ReRAM with Pt NPs shows stable switching behavior. A Pt NP density decrease results in an increase of OFF state resistance and decrease of forming voltage, whereas ON resistance was independent of the Pt NP density, which indicates that a single metal NP in a memory cell will achieve low power and stable operation.  相似文献   

18.
Resistive switching controlled by external voltage has been reported in many Metal/Resistive oxide/Metal (MRM) structures in which the resistive oxide was simple transition metal oxide thin films such as NiO or TiO2 deposited by reactive sputtering. In this paper, we have explored the possibility to form NiO-based MRM structures from the partial oxidation of a blanket Ni metallic film using a Rapid Thermal Annealing route, the remaining Ni layer being used as bottom electrode. X-ray diffraction was used to apprehend the Ni oxidation kinetics while transmission electron microscopy enabled investigating local microstructure and film interfaces. These analyses have especially emphasized the predominant role of the as-deposited Ni metallic film microstructure (size and orientation of crystallites) on (i) oxidation kinetics, (ii) NiO film microstructural characteristics (crystallite size, texture and interface roughness) and (iii) subsequent electrical behavior. On this latter point, the as-grown NiO films were initially in the low resistance ON state without the electro-forming step usually required for sputtered films. Above the threshold voltage varying from 2 to 5 V depending on oxidation conditions, the Pt/NiO/Ni MRM structures irreversibly switched into the high resistance OFF state. This irreversibility is thought to originate in the microstructure of the NiO films that would cause the difficulty to re-form conductive paths.  相似文献   

19.
Unipolar resistive switching behavior has been investigated in Pt/Co3O4/Pt stacks. The resistance ratio of the high- and low- resistance states is over 5 × 103. The “ON/OFF” operation of the memory cells can be repeated more than 200 times at room temperature. The resistance of the two states can be kept for more than 16 h without showing degradation. The temperature dependence of the resistance shows a metallic behavior at the low-resistance state, but a semiconductor-behavior at the high-resistance state. The mechanism responsible for the observed unipolar resistive switching behavior has been discussed.  相似文献   

20.
We have presented a study of the bipolar resistance switching characteristics in the Ag/ZnO/Pt cell. This switching is accompanied by a change in intensity of the photoluminescence emission at 3.33?eV which is attributed to zinc vacancy related transitions in ZnO film. Besides voltage-driven resistance switching phenomena, a transition from a high-resistance state to a lower one is observed under laser illumination at low temperature. These results demonstrate that the bipolar resistance switching can originate due to an electron trapping/de-trapping process at zinc-vacancy defects localized in the interface layer. The Mott metal-insulator transition is proposed as a possible mechanism of the memory effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号