首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 390 毫秒
1.
采用悬浮并流、湿混和干混的方法制备CuO-ZnO-Al2O3/HZSM-5双功能催化剂。考察了不同混合方法对催化剂催化性能的影响。结果表明,采用悬浮液并流共沉淀法制备的双功能催化剂,对CO2加氢直接合成二甲醚有较高的催化性能:在固定床反应器中,当温度为270℃,压力为3.0MPa,空速为4800h-1时,CO2的单程转化率达到27.12%,二甲醚的选择性达到47.63%。采用BET、XRD、TPR、TPD等对催化剂结构进行表征,结果表明HZSM-5分子筛的加入促进了CuO组分的分散,增加了催化剂整体的比表面积;同时CuO-ZnO-Al2O3组分也在一定程度上改变了HZSM-5的酸性中心的强度以及数量。  相似文献   

2.
采用不同水蒸气处理温度制备了一系列 HZSM-5分子筛,考察了其催化甲醇脱水反应的性能,并以其为甲醇脱水活性组分与铜基甲醇合成活性组分(Cu-ZnO-Al2O3 )组成双功能催化剂,考察了其对合成气直接制二甲醚反应的催化性能。结果表明,随着水蒸气处理温度的提高,HZSM-5分子筛的酸性逐渐减弱,从而使甲醇脱水反应的二甲醚选择性逐渐增大。对于催化合成气直接制二甲醚反应,当HZSM-5分子筛在适当温度(500℃)下进行处理时,可使反应产物中 CO2副产物的选择性明显下降,目的产物二甲醚的选择性显著提高。当处理温度过高(600℃)时,CO的转化率和二甲醚的选择性均明显降低。相同温度下的水蒸气和氨水蒸气处理对 Cu-ZnO-Al2O3/HZSM-5双功能催化剂催化合成气直接制二甲醚反应的性能几乎无影响。  相似文献   

3.
CO_2加氢直接制二甲醚双功能催化剂的研究进展   总被引:2,自引:1,他引:1  
综述了CO2加氢直接制二甲醚双功能催化剂的研究进展情况,重点介绍了双功能催化剂中甲醇合成活性组分、甲醇脱水活性组分和双功能催化剂的制备方法。CuO-ZnO基复合氧化物是最常用的甲醇合成活性组分,其铜锌比、制备方法和条件及助剂等显著影响双功能催化剂的性能。由于反应体系中含有较多的水,HZSM-5分子筛比γ-Al2O3更适合作为双功能催化剂的甲醇脱水活性组分。  相似文献   

4.
毛东森王嵩  卢冠忠 《石油化工》2007,36(11):1172-1178
综述了CO2加氢直接制二甲醚双功能催化剂的研究进展情况,重点介绍了双功能催化剂中甲醇合成活性组分、甲醇脱水活性组分和双功能催化剂的制备方法.CuO-ZnO基复合氧化物是最常用的甲醇合成活性组分,其铜锌比、制备方法和条件及助剂等显著影响双功能催化剂的性能.由于反应体系中含有较多的水,HZSM-5分子筛比γ-Al2O3更适合作为双功能催化剂的甲醇脱水活性组分.  相似文献   

5.
Cu-ZnO-Al_2O_3-ZrO_2/HZSM-5催化剂上CO_2加氢合成二甲醚   总被引:1,自引:1,他引:0  
王康军  马晓然  吴静 《石油化工》2012,41(5):588-591
采用共沉淀法和机械混合法合成了Cu-ZnO-Al2O3-ZrO2/HZSM-5双功能催化剂,研究了该催化剂催化CO2加氢合成二甲醚反应的性能,考察了HZSM-5分子筛的硅铝比、反应温度和反应压力对CO2转化率、二甲醚选择性和收率的影响。实验结果表明,随硅铝比的增大,二甲醚选择性和收率呈峰形变化特性;随反应温度的升高,CO2转化率增加,二甲醚选择性降低;而随反应压力的升高,二甲醚选择性增加。当硅铝比(n(SiO2)∶n(Al2O3))为50、反应温度和压力为250℃和3.0 MPa时,CO2转化率达到19.6%,二甲醚的选择性和收率分别为47.0%和9.2%。H2-TPR,NH3-TPD,XRD表征结果显示,Cu-ZnO-Al2O3-ZrO2/HZSM-5双功能催化剂中HZSM-5分子筛的结构没有明显变化,但硅铝比的变化影响双功能催化剂的酸性,HZSM-5分子筛的加入使Cu的还原温度降低。  相似文献   

6.
用F-T组元Fe改性甲醇催化剂Cu/Mn/ZrO2制备了一种CO加氢合成低碳醇催化剂,考察了Fe的加入量,反应条件(温度,压力,空速)对催化剂活性和选择性的影响。结果表明,浸渍法制备的Fe改性Cu/Mn/ZrO2催化剂,Fe的加入量为5%,经300度还原处理后,在T=3200170,p=6.0MPa,GHSV=5000h^-1时具有较好的反应性能,醇的时空产率为0.26g/(ml.h),其中C2,OH的选择性在28%左右,主要为C1-C5的直链醇,反应压力,空速的提高都有利于催化剂活性和选择性的提高,较高的温度使副反应加剧,合理的Fe含量,在合适的反应条件下会得到较佳性能的催化剂。  相似文献   

7.
《石油化工》2015,44(4):441
采用并流共沉淀法制备了不同Zr O2含量的Cu O-Zn O-Al2O3-Zr O2类水滑石前体,焙烧后与HZSM-5分子筛物理混合得到Cu O-Zn O-Al2O3-Zr O2/HZSM-5双功能催化剂,采用XRD、N2物理吸附、H2-TPR等技术对催化剂的物相、结构特征及还原性进行了表征,考察了催化剂对CO2加氢直接合成二甲醚(DME)反应的催化性能。实验结果表明,所有前体试样均具有结晶相为Cu3Zn3Al2(OH)16·4H2O的水滑石结构,Zr O2的加入改善了催化剂的还原性和活性,DME合成速率主要取决于甲醇的合成速率。在533 K、3.0 MPa、n(H2)∶n(CO2)=3∶1、GHSV=2 400 h-1的反应条件下,当n(Zr O2)∶n(Al2O3+Zr O2)=0.10时,催化剂的反应性能最佳,CO2转化率达25.87%,DME选择性达48.15%;反应30 h后,催化剂仍表现出较高的活性及稳定性。  相似文献   

8.
用F -T组元Fe改性甲醇催化剂Cu/Mn/ZrO2 制备了一种CO加氢合成低碳醇催化剂。考察了Fe的加入量、反应条件 (温度、压力、空速 )对催化剂活性和选择性的影响。结果表明 ,浸渍法制备的Fe改性Cu/Mn/ZrO2 催化剂 ,Fe的加入量为 5 %、经 3 0 0℃还原处理后 ,在T =3 2 0℃ ,p =6 0MPa,GHSV =5 0 0 0h-1时具有较好的反应性能 ,醇的时空产率为 0 2 6g/(ml·h) ,其中C2 +OH的选择性在 2 8%左右 ,主要为C1~C5的直链醇。反应压力、空速的提高都有利于催化剂活性和选择性的提高 ,较高的温度使副反应加剧。合理的Fe含量、在合适的反应条件下会得到较佳性能的催化剂。  相似文献   

9.
为获得高活性和高温稳定性好的甲烷燃烧催化剂,采用溶胶凝胶法制备了CuO/YSZ-Al2O3催化剂。通过改变ZrO2在YSZ-Al2O3载体中的含量制得不同ZrO2含量的CuO/YSZ-Al2O3催化剂,并考察ZrO2含量对催化剂催化甲烷燃烧性能的影响,同时利用BET、XRD等测试手段对催化剂进行了表征。结果表明,ZrO2在载体中存在最佳含量,当ZrO2质量分数为32.5%时,催化剂的活性和高温稳定性最好;该催化剂经1 000 ℃、5 h老化后,仍具有较高的比表面积和高温稳定性,是一种性能优异的甲烷燃烧催化剂。  相似文献   

10.
Zr促进的Cu-ZnO/HZSM-5合成二甲醚催化剂的制备   总被引:7,自引:0,他引:7  
采用共沉淀沉积法制备了Cu-ZnO-ZrO2/HZSM-5双功能催化剂,利用XRD,BET,H2-TPR等手段进行表征,并应用于CO2加氢合成二甲醚的反应中。考察了沉淀剂、硝酸盐浓度、共沉淀温度、pH值、焙烧温度等对催化性能的影响。研究结果表明,以Na2CO3作为沉淀剂,在硝酸盐浓度0.2 mol/L、沉淀温度80℃、pH值9.0、焙烧温度300℃的条件下,Cu-ZnO-ZrO2/HZSM-5双功能催化剂具有最佳的催化活性。ZrO2的作用主要表现为促进CuO和ZnO的分散,降低还原温度以及抑制逆水气变换副反应等。  相似文献   

11.
合成气低温合成二甲醚催化剂的研究   总被引:2,自引:0,他引:2  
采用共沉淀法制备了Cu Zn Al甲醇合成催化剂,在此基础上采用机械混合法和共沉淀沉积法制备了Cu Zn Al/HZSM 5+Al2O3二甲醚合成催化剂。以BET、XRD、TPR和XRF对催化剂进行了表征并采用高压微反对催化剂活性进行了评价。结果表明,所制备的Cu Zn Al甲醇合成催化剂同Topse公司的MK 101商业甲醇合成催化剂相比,前者具有更高的低温催化活性和稳定性。采用共沉淀沉积法制备的催化剂对于二甲醚合成的活性明显高于机械混合法制备的催化剂。以HZSM 5与酸性Al2O3(质量比4/1)作为复合脱水组分,当w(Cu Zn Al)/w(HZSM 5+Al2O3)=3 6时,以共沉淀沉积法制备的催化剂对于二甲醚合成具有高活性,特别是低温活性明显高于机械混合法制备的催化剂。  相似文献   

12.
合成气一步法制二甲醚双功能催化剂的研究进展   总被引:30,自引:4,他引:26  
概述了以合成气为原料一步法合成二甲醚双功能催化剂的研究现状及最新进展,分别介绍了双功能催化剂中的甲醇合成活性组分、甲醇脱水活性组分、两种活性组分的复合方法及配比等。锫和硼等是CuO-ZnO-Al2O3甲醇合成活性组分的良好助剂,硼、硅和钨可增强脱水组分γ-Al2O3的酸性,水蒸气处理和添加助剂可增加脱水组分HZSM-5的稳定性,共沉淀沉积法是制备双功能催化剂的较好方法。  相似文献   

13.
CO_2/H_2低压合成CH_3OH催化剂性能的研究   总被引:4,自引:0,他引:4  
研究了CO_2/H_2在CuO-ZnO-ZrO_2催化剂上低压合成甲醇反应的催化活性。采用TPR、XRD、BET等测试技术对催化剂结构、ZrO_2的作用及催化剂表面性质进行了探讨。研究认为,ZrO_2的加入对于提高活性组份的分散度及催化剂表面积有着重要作用。适量的ZrO_2有助于提高催化剂活性和甲醇选择性。ZrO,的加入量直接影响着CuO的分布和催化剂的活性。实验对操作条件的影响进行了研究。  相似文献   

14.
Abstract

Four bifunctional catalysts were prepared by physical mixing of a commercial methanol synthesis catalyst (JC207 catalyst, a catalyst for methanol synthesis, which has been industrialized in China) with zeolite HZSM-5 (Si-Al ratios of 25, 38, 50, 150) as a methanol dehydration catalyst. The bifunctional catalyst (JC207/HZSM-5 [Si/Al = 38]) showed better performance, which can be attributed to more acidic sites with moderate strength of zeolite, and which can control methanol dehydration rate, which is a rate determining step.  相似文献   

15.
沉淀型Ni-La_2O_3/ZrO_2催化剂上CO_2甲烷化性能的研究   总被引:1,自引:0,他引:1  
采用并流共沉淀法将不同量的稀土氧化物La2O3添加到Ni/ZrO2催化剂中,进行了XRD、TPR分析测试。结果表明,添加一定量的La2O3使催化剂的晶体结构发生变化,产生了新的物种,从而使催化剂表面改性,提高了NiO的分散度,有利于活性中心的形成,并且降低了催化剂的还原温度,当n(La)∶n(Ni)∶n(ZrO2)=0 4∶1∶1时效果最好;考察了反应温度和空速对CO2转化率的影响,在反应温度较低时,由于受到反应动力学的限制,CO2的转化率较低。  相似文献   

16.
以HZSM-5为载体,用钼酸铵和磷酸二氢铵做钼源和磷源,硝酸锆作为锆源,采用共沉淀法制备了氧化态前体,采用程序升温还原法制备出了负载型磷化钼催化剂,进行了XRD、 和BET表征。在反应温度360 ℃、压力2.5 MPa、空速1.0 h-1、氢油体积比400:1的条件下,在小型固定床反应器上进行全馏分FCC汽油的芳构化反应。考察了催化剂中,MoP负载量、ZrO2负载量和不同钼磷摩尔比对芳构化性能的影响。结果表明,当催化剂中钼的质量分数为25 %、ZrO2的质量分数为10 %、n(Mo):n(P)=1:1.5、反应温度为360 ℃时,催化剂芳构化活性最佳。液相产品中芳烃质量分数为38.37 %,烯烃质量分数为18.11 %,液体收率为92.52 %。  相似文献   

17.
采用反应评价并结合XRD、TPR、吡啶-TPD等物理化学手段研究了不同脱水组分对合成气直接制取二甲醚双功能催化剂结构和催化性能的影响,发现采用共沉淀沉积法制备的以CuO-ZnO-Al2O3为甲醇合成活性组分、HSY或HZSM-5A分子筛为脱水组分的双功能催化剂表现出优良的催化性能:CO转化率达89%,DME在有机物中的选择性接近99%;此处还发现,双功能催化剂的两活性组分发生“协同效应”,该反应中的脱水步骤在催化剂的弱酸位上进行  相似文献   

18.
在中孔SiO2中添加USY,HZSM-5,β分子筛组成双功能载体,并采用初湿浸渍法在载体上浸渍钴盐,制备了一系列分子筛改性的Co/SiO2催化剂,考察了分子筛的类型、HZSM-5分子筛的骨架硅铝比、HZSM-5分子筛在载体中的含量对Fischer-Tropsch合成汽油类烃(C5~12)的影响。实验结果表明,载体中SiO2和分子筛共同作用,提高了催化剂的活性,并使产物分布向汽油类烃偏移,其中,以HZSM-5分子筛改性的Co/SiO2催化剂的催化性能最好。HZSM-5分子筛改性催化剂对催化性能的影响受其骨架硅铝比的影响。当骨架硅铝比n(SiO2)∶n(Al2O3)=38、HZSM-5分子筛在载体中的质量分数为20%时,CO转化率达到80%以上,汽油类烃的选择性高达55%,其中异构烷烃的选择性在10%以上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号