首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 15 毫秒
1.
In this paper, ionization processes of secondary ions during ToF-SIMS dual beam depth profiling were studied by co-sputtering with 500 eV cesium and xenon ions and analyzing with 25 keV Ga+ ions. The Cs/Xe technique consists in diluting the cesium sputtering/etching beam with xenon ions to control the cesium surface concentration during ToF-SIMS dual beam depth profiling. Several depth profiles of a H-terminated silicon wafer were performed with varying Cs beam concentration and the steady state Si, Xe and Cs surface concentrations were measured in situ by Auger electron spectroscopy. It was found that the implanted Cs surface concentration increases with the Cs fraction in the beam from 0% for the pure Xe beam to a maximum Cs surface concentration for the pure Cs beam. Secondly, the variation of the silicon work function, due to the Cs implantation, was measured in situ and during depth profiling as the shift of the secondary ion kinetic energy distributions. Finally, the positive and negative elemental ion yields generated by the Ga analysis beam were recorded and modeled with respect to varying Cs/Xe mixture. We found that the Si and the Cs yields increase exponentially with the decrease of the silicon’s work function while that of Cs+ and Si+ decrease exponentially, as expected by the electron tunneling model.  相似文献   

2.
Sputtering of Ni5Pd and NiPd5 alloys by 10 keV Ar ions has been studied using the binary-collision simulation. Special attention was given to the angular distributions of sputtered atoms at the steady-state conditions. The results of simulations were compared with the experimental data published recently. For both targets, the concentrations of Ni and Pd atoms in the top monolayer were extracted from the experimental data. The results of simulations favor segregation of Pd in Ni5Pd and segregation of Ni in NiPd5. The total concentration of surface vacancies was found to be about 10-30%.  相似文献   

3.
Shave-off depth profiling by nano-beam secondary ion mass spectrometer (nano-beam SIMS), our own unique technique, achieves the highly precise depth profiling with nanometer-dimensional depth resolution. This method is a very unique depth profiling for acquiring a depth profile by the shave-off scanning mode (a fast horizontal sweep of an FIB is combined with a very slow vertical sweep). Shave-off depth profiling has its own features: absolute depth scale, pin point depth profiling and application for rough surface and hetero interface. However, conventional shave-off depth profiling provided only depth information by integrating lateral information. Therefore, we newly developed multilane shave-off profiling. In this new method, we can divide some lateral information precisely by synchronizing signal acquisition with FIB control. In this study, we demonstrate the example of new multilane shave-off profiling by analyzing build-up circuit.  相似文献   

4.
Interaction of a projectile with a solid has been considered in detail. It has been found that any collision cascade generated by a projectile can be characterized by the average kinetic energy of cascade atoms that represents an “instantaneous temperature” of the cascade during its very short lifetime (10−12 s). We refer to this value as the “dynamic temperature” in order to emphasize the fact that cascade atoms are in a dynamic equilibrium and have a definite energy distribution. The dynamic temperature defines the electron distribution in the cascade area and, hence, the ionization probability of sputtered atoms. The energy distribution of cascade atoms and, as a consequence, the dynamic temperature can be found experimentally by measuring the energy distribution of sputtered atoms. The calculated dynamic temperature has been found to be in good agreement with the experimental data on ion formation in the case of cesium and oxygen ion sputtering of silicon. Based on the developed model we suggest an experimental technique for a radical improvement of the existing cascade sputtering models.  相似文献   

5.
Low-energy heavy-ion time-of-flight elastic recoil detection analysis (TOF-ERDA) is becoming a mature technique for accurate characterization of thin films. In combination with a small tandem accelerator (∼2 MV terminal voltage) and beam energies below 20 MeV, it is suitable for routine analysis of key materials in semiconductor technology. In this paper we discuss advantages and drawbacks of low-energy ERDA, compared to high-energy ERDA, in terms of depth and mass resolution, detection efficiency for light elements, sample irradiation damage and quantification accuracy.The results presented are obtained with the time-of-flight telescope recently developed at IMEC. The time-of-flight is measured with timing gates based on electrostatic mirrors and is acquired in coincidence with the energy signal measured by a planar Si detector.  相似文献   

6.
Quantitative depth profiles of deuterium up to very large depths are achieved from the energy spectra of protons created by the D(3He,p)α nuclear reaction at incident energies up to 6 MeV. The advantages of this method compared to the more often applied resonance method are discussed. For light target materials the achievable depth resolution is mainly limited by geometrical spread due to the finite size of the detector aperture, while for heavy materials the resolution is mainly limited by multiple small-angle scattering. A reasonable depth resolution throughout the whole analyzed depth can be obtained by using several different incident energies. Depth profiling up to 38 μm is demonstrated for a-C:D layers deposited on the limiter of Tore Supra, and up to 7.5 μm in tungsten coatings from the divertor of ASDEX Upgrade.  相似文献   

7.
In this work x-cut Lithium Niobate crystals were implanted with 0.5 MeV O ions (nuclear stopping regime), 5 MeV O ions (sub-threshold electronic stopping regime) and 12.5 MeV Ti ions (ion track regime) at the fluences required for the formation of a surface fully disordered layer. The damage depth profiles were determined by RBS-channeling. Wet etching was performed at room temperature in 50% HF:H2O solution. The data indicated an exponential dependence of the etching rate on the damage concentration. Independently of the damage regime, once random level in the RBS-channeling spectra was attained we measured the same etching rate (50-100 nm/s) and the same volume expansion (∼10%) in all samples. These results indicate that the fully disordered layers obtained by electronic damage accumulation have the same chemical properties of those obtained by conventional nuclear damage accumulation and therefore they can be defined “amorphous”. The impressive etching selectivity of ion implanted regions makes this process suitable for sub-micro machining of Lithium Niobate.  相似文献   

8.
Structural modifications in the zircon and scheelite phases of ThGeO4 induced by swift heavy ions (93 MeV Ni7+) at different fluences as well as pressure quenching effects are reported. X-ray diffraction and Raman measurements at room temperature on the irradiated zircon phase of ThGeO4 indicate the occurrence of stresses that lead to a reduction of the cell volume up to 2% followed by its transformation to a mixture of nano-crystalline and amorphous scheelite phases. Irradiation of the zircon phase at liquid nitrogen temperature induces amorphization at a lower fluence (7.5 × 1016 ions/m2), as compared to that at room temperature (6 × 1017 ions/m2). Scheelite type ThGeO4 irradiated at room temperature undergoes complete amorphization at a lower fluence of 7.5 × 1016 ions/m2 without any volume reduction. The track radii deduced from X-ray diffraction measurements on room temperature irradiated zircon, scheelite and low temperature irradiated zircon phases of ThGeO4 are, 3.9, 3.5 and 4.5 nm, respectively. X-ray structural investigations on the zircon phase of ThGeO4 recovered after pressurization to about 3.5 and 9 GPa at ambient temperature show the coexistence of zircon and disordered scheelite phases with a larger fraction of scheelite phase occurring at 9 GPa. On the other hand, the scheelite phase quenched from 9 GPa shows crystalline scheelite phase pattern.  相似文献   

9.
Low-energy ion irradiation of polymer induces different phenomena in the near surface layer, which effect strongly the metal-polymer interface formation and promotes adhesion of polymers to metals. Low-energy argon and oxygen ion beams were used to alter the chemical and physical properties of different polymers (PS (polystyrene), PαMS (poly(α-methylstyrene), BPA-PC (bisphenol-A-polycarbonate) and PMMA (poly(methyl methacrylate)), in order to understand the adhesion phenomena between a deposited Cu layer and the polymers. The resulting changes were investigated by various techniques including X-ray photoelectron spectroscopy, measurements of the metal condensation coefficient and a new technique to measure cross-linking at the polymer surface. Two types of practical adhesion strengths of Cu-polymer systems, measured using 90° peel tests, were observed: (i) peel strength increased at low ion fluences, reached a maximum and then decreased after prolonged treatment and (ii) no improvement in the peel strength on treated polymer surfaces was recorded. The improvement in the metal-polymer adhesion in the ion fluence range of 1013-1015 cm−2 is attributed to the creation of a large density of new adsorption sites resulting in a larger contact area and incorporation of chemically active groups that lead to increased interaction between metal and polymer by metal-oxygen-polymer species formation. XPS analysis of peeled-off surfaces showed that in most cases the failure location changed from interfacial for untreated polymers to cohesive failure in the polymer for treated surfaces. These observations and measurements of the metal condensation coefficients suggest that bonding is improved at the metal-polymer interface for all metal-polymer systems. However, the decrease in the peel strength at high ion fluences is attributed to the formation of a weak boundary layer in polymers. The correlation between sputter rate of polymers and altering in the peel strength for moderate ion fluences was determined. It was observed that the metal-polymer adhesion could be improved for PS and BPA-PC, which have a low sputter rate and preferentially formed cross-links in the treated surface. For degrading polymers, like PαMS and PMMA, chain scission rather than cross-linking dominates, low molecular weight species are formed and no adhesion enhancement is observed.  相似文献   

10.
The present study is relevant to the preferential Al sputtering and/or enhancement of the Ni/Al ratio in Ni3Al observed by the scanning transmission electron microscopy fitted with a field emission gun (FEG STEM). Atomic recoil events at the low index (1 0 0), (1 1 0) and (1 1 1) surfaces of Ni3Al through elastic collisions between electrons and atoms are simulated using molecular dynamics (MD) methods. The threshold energy for sputtering, Esp, and adatom creation, Ead, are determined as a function of recoil direction. Based on the MD determined Esp, the sputtering cross-sections for Ni and Al atoms in these surfaces are calculated with the previous proposed model. It is found that the sputtering cross-section for Al atoms is about 7-8 times higher than that for Ni, indicating the preferential sputtering of Al in Ni3Al, in good agreement with experiments. It is also found that the sputtering cross-sections for Ni atoms are almost the same in these three surfaces, suggesting that they are independent of surface orientation. Thus, the sputtering process is almost independent of the surface orientation in Ni3Al, as it is controlled by the sputtering of Ni atoms with a lower sputtering rate.  相似文献   

11.
Cross-sections for the ionization of liquid water is perhaps the most essential set of data needed for modeling electron transport in biological matter. The complexity of ab initio calculations for any multi-electron target has led to largely heuristic semi-empirical models which take advantage elements of the Bethe, dielectric and binary collision theories. In this work we present various theoretical models for calculating total ionization cross-sections (TICSs) for liquid water over the 10 keV-1 MeV electron energy range. In particular, we extend our recent dielectric model calculations for liquid water to relativistic energies using both the appropriate kinematic corrections and the transverse part. Comparisons are made with widely used atomic and molecular TICS models such as those of Khare and co-workers, Kim-Rudd, Deutsch-Märk, Vriens and Gryzinski. The required dipole oscillator strength was provided by our recent optical-data model which is based on the latest experimental data for liquid water. The TICSs computed by the above models differ by up to 40% from the dielectric results. The best agreement (to within ∼10%) was obtained by Khare’s original model and an approximate form of Gryzinski’s model. In contrast, the binary-encounter-dipole (BED) models of both Kim-Rudd and Khare and co-workers resulted in ∼10-20% higher TICS values, while discrepancies increased to ∼30-40% when their simpler binary-encounter-Bethe (BEB) versions were used. Finally, we discuss to what extent the accuracy of the TICS is indicative of the reliability of the underlying differential cross-sections.  相似文献   

12.
A new TOF telescope has been constructed for thin film and surface analysis. The timing system consists of two electrostatic mirror type detectors of Busch design. The detection efficiency of timing stations for very light ions was significantly improved using DLC (diamond like carbon) foils coated with LiF instead of the conventionally used carbon foils. Ion energy is measured by a 300 mm2 ULTRA ion-implanted silicon detector. For the ERDA measurements with heavy and energetic ion beams, a time-of-flight (TOF) spectrometer is positioned at 37.5°. Spectrometer can be easily moved to 120° backward angle for time-of-flight RBS analysis with low energy beam of light ions. Positioning and fine adjustments of sample orientation are performed with a motorized sample stage. The same spectrometer can be also installed at the ion microprobe scattering chamber for 3D elemental imaging.  相似文献   

13.
The Cyclone 18/9 cyclotron system at the Centro Nacional de Aceleradores (Sevilla, Spain) is commonly used to create short life radioisotopes for PET applications. Besides, an external beam transport line has been recently installed in one of the target ports with two major purposes: to study the effects of 18 MeV protons irradiation on the behaviour of electronic devices for space applications and to complement the analysis of materials using our 3 MV tandem accelerator with the PIXE measurements at high energy.In this work, the main elements of our beamline will be briefly described and the first PIXE application will be presented. The usual PIXE, in the analysis of archaeological metallic objects, using around 3 MeV protons requires having a shiny area. Our purpose is to obtain a deeper determination of the bulk composition bombarding with 18 MeV protons through the corroded samples surfaces, without polishing the ancient object. To check this methodology high energy PIXE has been performed on two fibulae of the Later Bronze Age and First Iron Age, coming from the area around Sevilla.  相似文献   

14.
Previous simulations of glancing incidence ion-surface interaction have demonstrated that classical dynamics using the row-model have successfully reproduced multimodal azimuthal and polar spectra. These studies have also shown considerable sensitivity to the form of the interatomic potential thus making it a strong test of the validity of such potentials and even allow deduction of the ion-surface potentials. In these simulations the individual pairwise interactions between the projectile and the target atoms have been replaced by cylindrical potentials.Comparison to numerous experimental studies have confirmed the existence of rainbow scattering phenomena and successfully tested the validity of the cylindrical potential used in these simulations. The use of cylindrical potentials avoids stochastic effects due to thermal displacements and allows faster computer simulations leading to reliable angular distributions.In the present work we extend the row-model to consider scattering from binary alloys. Using He+ scattered at glancing incidence from NiAl surfaces, Al or Ni terminated, a faster method has been developed to easily and accurately quantize not only the maximum deflection azimuthal angle but all the singular points in the angular distribution. It has been shown that the influence of the surface termination on the rainbow angle and the inelastic losses is small.  相似文献   

15.
SiC epilayers grown on 4H-SiC single crystals were implanted with 850 keV Ni+ ions with fluences in the 0.5-9 × 1016 Ni+/cm2 range. Most of the samples were implanted at 450 °C, but for comparison some implantations were performed at room temperature (RT). In addition, a post-implantation annealing was performed in N2 at 1100 °C in order to recover the implantation-induced structural damage. The disorder produced by the implantation at 450 °C and the effect of the post-implantation annealing on the recrystallization of the substrates have been studied as a function of the fluence by Backscattering Spectrometry in channeling geometry (BS/C) with a 3.45 MeV He2+ beam. RT as-implanted samples showed a completely amorphous region which extends until the surface when irradiated with the highest dose, whereas in the case of 450 °C implantation amorphization does not occur. In general, partial recovery of the crystal lattice quality was found for the less damaged samples, and the dynamic recovery of the crystalline structure increases with the irradiation temperature.  相似文献   

16.
We have investigated the scattering of K+ and Cs+ ions from a single crystal Ag(0 0 1) surface and from a Ag-Si(1 0 0) Schottky diode structure. For the K+ ions, incident energies of 25 eV to 1 keV were used to obtain energy-resolved spectra of scattered ions at θi = θf = 45°. These results are compared to the classical trajectory simulation safari and show features indicative of light atom-surface scattering where sequential binary collisions can describe the observed energy loss spectra. Energy-resolved spectra obtained for Cs+ ions at incident energies of 75 eV and 200 eV also show features consistent with binary collisions. However, for this heavy atom-surface scattering system, the dominant trajectory type involves at least two surface atoms, as large angular deflections are not classically allowed for any single scattering event. In addition, a significant deviation from the classical double-collision prediction is observed for incident energies around 100 eV, and molecular dynamics studies are proposed to investigate the role of collective lattice effects. Data are also presented for the scattering of K+ ions from a Schottky diode structure, which is a prototype device for the development of active targets to probe energy loss at a surface.  相似文献   

17.
The total mass attenuation coefficients (μm), for Cr, Fe, Ni and FexNi1−x (x = 0.8, 0.7, 0.6, 0.5, 0.4, 0.3 and 0.2), FexCryNi1−(x+y) (x = 0.7, y = 0.1; x = 0.5, y = 0.2; x = 0.4, y = 0.3; x = 0.3, y = 0.3; x = 0.2, y = 0.2 and x = 0.1, y = 0.2) and NixCr1−x (x = 0.8, 0.6, 0.5, 0.4 and 0.2) alloys were measured at 22.1, 25.0, 59.5 and 88.0 keV photon energies. The samples were irradiated with 10 mCi Cd-109 and 100 mCi Am-241 radioactive point source using transmission arrangement. The γ- and X-rays were counted by a Si(Li) detector with a resolution of 160 eV at 5.9 keV. Total atomic and electronic cross-sections (σt and σe), effective atomic and electron numbers (Zeff and Neff) were determined experimentally and theoretically using the obtained mass attenuation coefficients for investigated 3d alloys. The theoretical mass attenuation coefficients of each alloy were estimated using mixture rule. The experimental values were compared with the calculated values for all samples.  相似文献   

18.
The increasing demand for measuring long-lived radionuclides with small AMS machines at energies below 1 MeV per nucleon raises the need for compact detectors which still have a decent energy resolution and allow for a clear identification of the incident particles. Based on a design by the AMS group at the ETH Zurich a compact gas ionization chamber was built and installed at the 3 MV tandem AMS facility VERA (Vienna Environmental Research Accelerator). The main challenge in AMS is the detection of rare isotope species in the presence of strong isotopic and isobaric interferences. The task of the ionization chamber is the suppression of the unwanted isobar by separating the ions via their different stopping powers. Measurements of 36Cl at VERA showed an achieved suppression of the unwanted stable isobar 36S of 3 × 10−4 and measurements of 10Be showed an achieved suppression of 10B of at least 3 × 10−6. Additional suppression of the isobaric ions can be achieved by a degrader foil technique applied to 10Be measurements by G.M. Raisbeck. In combination with the new ionization chamber the achieved suppression of 10B is at least 10−10. Measurements of blank samples at VERA show that the background for AMS with 10Be is below 2 × 10−15.  相似文献   

19.
The longlived isotope 10Be is of great importance in earth sciences for dating applications, reconstruction of the solar activity or in climate research. Routine AMS measurements with BeO samples are performed on accelerators with a terminal voltage above 2 MV. Applying the degrader foil technique for boron suppression, first tests with BeO samples on the 0.6 MV ETH/PSI machine were limited by background to a 10Be/9Be ratio of 10−13. The background was identified as 9Be which reaches the detector by scattering processes. By applying an additional magnetic mass filter to the high energy mass spectrometer the background was effectively removed. A 10Be/9Be background ratio of <5 × 10−15 was achieved. The overall efficiency (detected 10Be compared to BeO injected into the accelerator) was 7-8%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号