首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Skeletal and reduced reaction mechanisms replicate the behavior of full reaction mechanism within the band/regime of optimization criteria and provide specific computational advantages for resource-intense multi-physics domain analysis. The current work reports on the development of skeletal and reduced mechanisms for bio-derived Producer gas and Hydrogen-rich Syngas by using GRI Mech 3.0 mechanism. The mechanisms are generated adopting graph-based approach, and timescale analysis are validated for laminar flame speed based on experiments in the equivalence ratios regime of 0.6–1.6 adopting a flame tube apparatus built in-house to mimic a freely propagating double infinity domain premixed reactor. Extending the analysis, the reduced/skeletal mechanisms are numerically validated for ignition delay time, major species profile, and volumetric heat release rate with validity established within the 5% tolerance limit. The current work is a first of its kind to propose optimized mechanism for compositions typical of bio-derived Producer gas and Syngas.  相似文献   

2.
This study presents the relation of the biomass properties with the gasification performance. The potential of microalgae (N. oculta) for gasification also has been investigated. Other biomasses such as palm frond, mangrove, and rice husk were considered as the benchmarks. The performance of a combined gasification process for different biomass was evaluated by developing a thermodynamic model using Aspen Plus. The performance of gasification process was evaluated based on the composition of the producer gas, the cold gas efficiency, and the gasification system efficiency. The effects of biomass composition on the gasification performance was studied by varying the gasification temperature, the oxygen equivalence ratio, and the steam to carbon ratio. It was found that the H/O ratio in the feed biomass has a considerable effect on the H2/CO ratio of producer gas on the gasification without gasifying agent. The gasification of algae with oxygen exhibited the highest H2/CO ratio. The highest cold gas efficiency was found during gasification of algae with oxygen, while the highest cold gas efficiency from gasification with steam was exhibited on gasification of palm frond. The highest gasification system efficiency was obtained for palm frond using the oxygen or steam as the gasifying agent.  相似文献   

3.
An integrated system of supercritical water gasification (SCWG) and combined cycle has been developed for H2 production and power generation. Sewage sludge and lignite coal were selected as raw material in this simulation. The effects of feed concentration (10–30 wt%) and lignite coal addition (0–50 wt%) on syngas yield and H2 yield were also investigated in the temperature range of 500 °C–700 °C. Several heat exchangers were considered in the proposed integrated system to minimize energy loss. High pressure syngas was expanded by using turbo-expander to produce electricity, resulting in the improvement of the total efficiency. The results showed that the minimum feed concentrations of 14.25 wt%, 18.75 wt%, and 25.50 wt% were required to achieve self-sufficient energy at 500 °C, 600 °C, and 700 °C, respectively. However, the lower feed concentration and higher temperature were preferable for syngas production. The highest syngas and H2 yield were obtained at 700 °C and 10 wt% feed concentration. The SCWG could produce 178.08 kg syngas from 100 kg feed and 9.06 kg H2 were obtained after H2 separation. The total power generation from turbo-expander and combined cycle module was 48.37 kW. By combining SCWG and combined cycle, the total efficiency could reach 63.48%. It worth mentioning that the addition of lignite coal could help reduce the minimum feed concentration to achieve autothermal condition, but did not have significant improvement on H2 production.  相似文献   

4.
In theory, China has vast potential forest resources for production of energy, but utilization on an industrial scale has been negligible. We assessed the practical possibilities and barriers for a forest energy business in a case study in northern China. The specific objectives of the study were 1) to assess the availability of forest biomass for energy production, 2) to determine feasible supply chains, and 3) to estimate the biomass fuel supply costs. Based on the case study results, the stand-level removals of the intended feedstock were low and the supply costs were relatively high. Suggestions for increasing the raw material basis, lowering the costs and further research and development were given. We conclude that although the case study area may not be promising from the feedstock point of view, the development could be started with small steps and proven technology. In order to avoid expensive mistakes further research for transfer of know-how and technology is needed.  相似文献   

5.
6.
Techno-economic assessments confirm the potential of wind energy to contribute to a low carbon bioeconomy. The increasing diffusion of wind energy, however, has turned wind energy acceptance into a significant barrier with respect to the deployment of wind turbines. This article assesses whether, and at what cost, Austrian renewable energy targets can be met under different expansion scenarios considering the socio-political and market acceptance of wind energy. Land-use scenarios have been defined in a participatory modeling approach with stakeholders from various interest groups. We calculated the levelized cost of electricity (LCOE) for all of the potential wind turbine sites, which we used to generate wind energy supply curves. The results show that wind energy production could be expanded to 20% of the final end energy demand in three out of four scenarios. However, more restrictive criteria increase LCOE by up to 20%. In contrast to common views that see local opposition against wind projects as the main barrier for wind power expansion, our participatory modeling approach indicates that even on the level of key stakeholders, the future possible contribution of wind energy to Austrian renewable energy targets reaches from almost no further expansion to very high shares of wind energy.  相似文献   

7.
The effect of the relative positioning of a pair of porous blunt plates, subject to convective drying, on heat/mass transfer phenomena is investigated numerically based on a combination of a flow-heat transfer simulation with a suitable drying model. The air flow is assumed incompressible, two-dimensional, laminar, confined in a channel and parallel to the plates. The finite volume method is used and the computed temporal and spatial variations of flow parameters, moisture content and temperature for different arrangements are analyzed. Several configurations are studied: Side-by-Side, Staggered and in-Tandem arrangements, in an attempt to find the optimum relative positioning which results in the highest reduction of the mean moisture content of the plates, as well as in a more uniform drying. It was found that the Side-by-Side arrangement shows the best overall drying behaviour among all arrangements considered, owing to the enhancement of heat/mass transfer caused by the blockage effect. The analysis of the parameters affecting the transport rates and the uniformity of drying as well as the discussion of the development of unfavorable aerodynamic or thermal effects due to the interaction of product units, may be valuable in optimizing the arrangement of the products in the dryer.  相似文献   

8.
To produce the high quality H2-rich syngas from biomass and plastic wastes, a two-stage pyrolysis-gasification system involving pyrolysis and catalytic gasification is considered as a suitable route. Generally, synthesis of highly active, low cost and coke-resistant catalyst for tar cracking is the key factor. A series of monometallic catalysts of Ni@CNF/PCs and Fe@CNF/PCs and the bimetallic Ni–Fe@CNF/PCs catalyst were prepared by a simple one-step pyrolysis approach for high quality syngas production from pyrolysis-gasification of biomass and plastic wastes. The results indicated that the bimetallic Ni–Fe@CNF/PCs catalyst appeared as the optimal catalyst in affording the best compromise between catalytic activity and stability with the existence of the excellent dispersibility of the Fe0.64Ni0.36 alloy nanoparticles and the carbon nanofibers/porous carbon composite structure. In addition, the optimal operation conditions of biomass/plastic ratio of 1/2 and gasification temperature of 700 °C were observed for the bimetallic Ni–Fe@CNF/PCs catalyst to play best roles in the H2-rich syngas quality, with up to 33.66 mmol H2/g biomass, and tar yields as low as 5.66 mg/g.  相似文献   

9.
Ethanol steam reforming of synthetic bioethanol (i.e., anhydrous ethanol plus water), as well as bioethanol obtained from glucose standards and sugarcane press-mud was evaluated on monoliths washcoated with RhPt/CeO2–SiO2. Tests with synthetic bioethanol indicated that the lower pressure drop favors higher ethanol conversion in the monoliths with respect to the powder samples. Also, two monoliths in series with 0.08 gcat/cm3 improved H2 yield compared to just one monolith with 0.16 gcat/cm3. Similarly, a decrease in the amount of carrier gas contributes to diffusion limitations in the monoliths, reducing the H2/CO ratio. Monoliths stability was also evaluated with “real” bioethanol samples (from glucose standards and sugarcane press-mud-SPM). In all cases, a syngas with >60% of H2 was produced. For SPM-bioethanol, 3.1 ± 0.2 mol H2/mol EtOH were obtained without evidence of deactivation for 120 h, at a cost of 6.9 $/kgH2, becoming a promising way to develop a technology for sustainable energy production.  相似文献   

10.
The common fermentation of biogenic wastes and sewage sludge in digesters of municipal wastewater treatment plants is a technically feasible and economically viable approach. As the number of rural biogas production sites is steadily increasing, the question has been raised which biomass feedstocks are left available in sufficient quantities to be used for energy generation at wastewater treatment plant level. The contribution of lignocellulosic biomass collected from urban areas is generally neglected within this context. In the present study, 24 urban substrates have been analyzed for their theoretical methane potential, while 13 of them were tested in batch assays for the determination of their practical achievable methane yield. The theoretical evaluation of the methane potential yielded values ranging between 0.393 and 0.576 Nm3 kgVS−1. The methane yields obtained by batch assays showed significantly lower yields, which depends on the individual composition of the substrates in terms of lignin, hemicellulose and cellulose. A GIS spatial analysis for the Rhine-Ruhr metropolitan area was performed to evaluate the feasible capacity of urban biomass as co-fermentation feedstock in digesters of municipal wastewater treatment plants. The analysis revealed that green urban areas provide a significant quantity of biomass of 377 tFM d−1 that could cover 67% of the annual energy demand of twelve typical wastewater treatment plants located in the metropolis.  相似文献   

11.
Mechanochemical CO2 methanation reactions using LaNi5 and LaNi4.6Al0.4 hydrogen storage alloy powders were investigated by the in-situ monitoring of the gas pressure change during ball-milling. Methane generation begins when the H2 partial pressure drops due to the H-uptake by the powder. Phase transition occurred in the sample after milling for 15 min and 224 min, with separate metallic Ni, La-oxide and La-hydroxide phases observed. Methane generation continued even after this phase separation. Our results imply that the formation of La-hydroxide at the surface and sub-surface contributed to methane generation during ball-milling. A comparison of LaNi5 and LaNi4.6Al0.4 suggests the amount of hydrogen stored in the hydrogen storage powder dominates the timing of the onset of the methane generation.  相似文献   

12.
F. Gori 《Applied Thermal Engineering》2009,29(11-12):2172-2186
The price evolution of non-renewable resources versus the consumption rate is investigated with the aim of constructing the energy supply curve. The case studied is without accumulation nor depletion of the resources and the mass and energy-capital conservation equations are solved under the condition of the same mass flow rate of extraction and sale. The energy supply curve of extracted resource is dependent on the newly defined parameter, RINE, Rate of Interest of Non-extracted resources on the Extraction rate. The energy supply curve of sold resource is dependent on the newly defined parameter, RISE, Rate of Interest of Sold resources on the Extraction rate, in case the rate of interest of non-extracted resources, rN, is nil. In general, the energy supply curve of sold resource is dependent also on two dimensionless parameters, Dimensionless Critical Initial Price of Sold resources, i.e. DCIPS, and Dimensionless Critical Initial Price Extreme of Sold resources, i.e. DCIPES. The energy supply curve of sold resources is investigated under different relations between three parameters, i.e. extraction rate and interest rates of non-extracted and extracted/sold resources. New trends are observed in the economic market of non-renewable energy resources. The energy supply curve of the difference between sold and extracted resource is also obtained and is dependent on two dimensionless parameters, Critical Initial Price Difference, i.e. CIPD, and Critical Extreme of the Initial Price Difference, i.e. CEIPD. Finally, the predictions obtained with the present approach are compared to the real evolution of the world price of oil and the European price of gas versus the world consumption during the last three decades, i.e. from 1980 until 2005 for oil and from 1984 until 2005 for gas, taking into account inflation, discount and prime rates of the economic market. The agreement is acceptable but, more important, the trend is correctly predicted. The price difference between sold and extracted resources is also investigated versus the dimensionless mass flow rate of extraction. The evolution is dependent on four parameters: RINE, RISE, DCIPS, and DCIPES.  相似文献   

13.
The present biofuel policies in the European Union primarily stimulate 1st generation biofuels that are produced based on conventional food crops. They may be a distraction from lignocellulose based 2nd generation biofuels – and also from biomass use for heat and electricity – by keeping farmers' attention and significant investments focusing on first generation biofuels and the cultivation of conventional food crops as feedstocks. This article presents two strategies that can contribute to the development of 2nd generation biofuels based on lignocellulosic feedstocks. The integration of gasification-based biofuel plants in district heating systems is one option for increasing the energy efficiency and improving the economic competitiveness of such biofuels. Another option, biomass co-firing with coal, generates high-efficiency biomass electricity and reduces CO2 emissions by replacing coal. It also offers a near-term market for lignocellulosic biomass, which can stimulate development of supply systems for biomass also suitable as feedstock for 2nd generation biofuels. Regardless of the long-term priorities of biomass use for energy, the stimulation of lignocellulosic biomass production by development of near term and cost-effective markets is judged to be a no-regrets strategy for Europe. Strategies that induce a relevant development and exploit existing energy infrastructures in order to reduce risk and reach lower costs, are proposed an attractive complement the present and prospective biofuel policies.  相似文献   

14.
Biomass is considered one of the most important options in the transition to a sustainable energy system with reduced greenhouse gas (GHG) emissions and increased security of enegry supply. In order to facilitate this transition with targeted policies and implementation strategies, it is of vital importance to understand the economic benefits, uncertainties and risks of this transition. This article presents a quantification of the economic impacts on value added, employment shares and the trade balance as well as required biomass and avoided primary energy and greenhouse gases related to large scale biomass deployment on a country level (the Netherlands) for different future scenarios to 2030. This is done by using the macro-economic computable general equilibrium (CGE) model LEITAP, capable of quantifying direct and indirect effects of a bio-based economy combined with a spread sheet tool to address underlying technological details. Although the combined approach has limitations, the results of the projections show that substitution of fossil energy carriers by biomass, could have positive economic effects, as well as reducing GHG emissions and fossil energy requirement. Key factors to achieve these targets are enhanced technological development and the import of sustainable biomass resources to the Netherlands.  相似文献   

15.
The literature on renewable energy sources indicates that an increase of the intermittent wind and solar generation affects significantly the distribution of electricity prices. In this article, the influence of two types of renewable energy sources (wind and solar photo voltaic) on the level and variability of German electricity spot prices is analyzed. The quantile regression models are built to estimate the merit order effect for different quantiles of electricity prices. The results indicate that both types of renewable generations have a similar, negative impact on the price level, approximated by the price median. When the price volatility, measured by the inter-quantile range (IQR), is considered, the outcomes show that wind and solar influence prices differently. Conditional on the level of the total demand, the wind generation would either increase (when the demand is low) or decrease (when the demand is high) the IQR. Meanwhile, the increase of solar power stabilizes the price variance for moderate demand level. Thus, policy supporting the development and integration of RES should search for a balance between the wind and solar power.  相似文献   

16.
Based on literature and six country studies (Belgium, Denmark, Finland, Netherlands, Sweden, Slovakia) this paper discusses the compatibility of the EU 2020 targets for renewable energy with conservation of biodiversity.We conclude that increased demand for biomass for bioenergy purposes may lead to a continued conversion of valuable habitats into productive lands and to intensification, which both have negative effects on biodiversity. On the other hand, increased demand for biomass also provides opportunities for biodiversity, both within existing productive lands and in abandoned or degraded lands. Perennial crops may lead to increased diversity in crop patterns, lower input uses, and higher landscape structural diversity which may all have positive effects on biodiversity.In production forest opportunities exist to harvest primary wood residues. Removal of these forest residues under strict sustainability conditions may become economically attractive with increased biomass demand.An additional biomass potential is represented by recreation areas, road-side verges, semi-natural and natural areas and lands which have no other use because they have been abandoned, polluted or degraded.Whether effects of cropping of biomass and/or removal of biomass has positive or negative impact on biodiversity depends strongly on specific regional circumstances, the type of land and land use shifts involved and the associated management practices in general. However, it is clear that in the six countries studied certain types of biomass crops are likely to be more sustainable than others.  相似文献   

17.
This paper presents a techno-economic analysis of corn stover fired process heating (PH) and the combined heat and power (CHP) generation systems for a typical corn ethanol plant (ethanol production capacity of 170 dam3). Discounted cash flow method was used to estimate both the capital and operating costs of each system and compared with the existing natural gas fired heating system. Environmental impact assessment of using corn stover, coal and natural gas in the heat and/or power generation systems was also evaluated. Coal fired process heating (PH) system had the lowest annual operating cost due to the low fuel cost, but had the highest environmental and human toxicity impacts. The proposed combined heat and power (CHP) generation system required about 137 Gg of corn stover to generate 9.5 MW of electricity and 52.3 MW of process heat with an overall CHP efficiency of 83.3%. Stover fired CHP system would generate an annual savings of 3.6 M$ with an payback period of 6 y. Economics of the coal fired CHP system was very attractive compared to the stover fired CHP system due to lower fuel cost. But the greenhouse gas emissions per Mg of fuel for the coal fired CHP system was 32 times higher than that of stover fired CHP system. Corn stover fired heat and power generation system for a corn ethanol plant can improve the net energy balance and add environmental benefits to the corn to ethanol biorefinery.  相似文献   

18.
19.
Ni/SiO2 and Ni–Al2O3/SiO2 catalysts were prepared by incipient wetness impregnation using citrate and nitrate precursors and tested with a reaction of combination of CO2 reforming and partial oxidation of methane to produce syngas (H2/CO). The catalytic activity of Ni/SiO2 and Ni–Al2O3/SiO2 greatly depended on interaction between NiO and support. NiO strongly interacted with support formed small nickel particles (about 4 nm for NiSC which is abbreviation of Ni/SiO2 prepared with Nickel citrate precursor) after reduction. The small nickel particles over NiSC catalysts exhibited a good catalytic performance.  相似文献   

20.
A novel transport chain for stranded natural gas utilized for power production with CO2 capture and storage is developed. It includes an offshore section, a combined gas carrier, and an onshore integrated receiving terminal. Due to utilization of the cold exergy both in the offshore and onshore processes, and combined use of the gas carrier, the transport chain is both energy and cost effective. In this paper, the liquefied energy chain (LEC) is explained, including novel processes for both the offshore field site and onshore market site. In the offshore section, natural gas (NG) is liquefied to LNG by liquid carbon dioxide (LCO2) and liquid inert nitrogen (LIN), which are used as cold carriers. The LNG is transported in a combined gas carrier to the receiving terminal where it is used as a cooling agent to liquefy CO2 and nitrogen. The LCO2 and LIN are transported offshore using the same combined carrier. Pinch and Exergy Analyses are used to determine the optimal offshore and onshore processes and the best transport conditions. The exergy efficiency for a thermodynamically optimized process is 87% and 71% for the offshore and onshore processes, respectively, yielding a total efficiency of 52%. The offshore process is self-supported with power and can operate with few units of rotating equipment and without flammable refrigerants. The loss of natural gas due to power generation for the energy requirements in the LEC processes is roughly one third of the loss in a conventional transport chain for stranded natural gas with CO2 sequestration. The LEC has several configurations and can be used for small scale (<0.25 MTPA LNG) to large-scale (>5 MTPA LNG) transport. In the example in this paper, the total costs for the simple LEC including transport of natural gas to a 400 MWnet power plant and return of 85% of the corresponding carbon as CO2 for a total sailing distance of 24 h are 58.1 EUR/tonne LNG excluding or including the cost of power. The total power requirements are 319 kWh/tonne, hence the energy costs are 31.9 EUR/tonne LNG adding up to 90.0 EUR/tonne LNG. The exergy efficiency for this energy chain including power production and CO2 capture is 46.4% with a total cost of 20.4 EUR/MWh for the produced electricity. The total emissions (in CO2 equivalents) in the chain are 1–1.5% of the transported CO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号