首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Supercritical water gasification (SCWG) is a novel technology for environmental pollution management and hydrogen production from biomass and wastes. In this study, the SCWG of black liquor (BL) which is high-potential biomass and rich in alkalis was investigated. The experiments were conducted in a batch reactor at 350–400 °C, reaction time of 1–60 min, and constant concentration of 9 wt% of BL in the absence and presence of heterogeneous catalysts (3–5 wt%), lignocellulosic biomass, and formic acid (5 and 7 wt %) in three parts. First, the SCWG of BL was performed without any additive. The experimental results showed that the maximum production of H2, CO2, and CH4 was obtained at the highest temperature and reaction time; 400 °C and 60 min. The hydrogen yield was also enhanced by increasing the temperature, and reached 3.51 mol H2/kg dry ash free-black liquor (DAF-BL) at 400 °C. Reaction time increment improved the gas product and gasification efficiency up to 28.03 mmol and 21.73%, respectively. Subsequently, three heterogeneous catalysts (MnO2, CuO, and TiO2) were used, however 5 wt% of MnO2 was the best catalyst, significantly improving the hydrogen yield compared to the same condition of BL gasification without a catalyst. Hydrogen yield reached 5.09 mol H2/kg (DAF-BL) at 400 °C and the reaction time of 10 min. Finally, BL with poplar wood residue as a lignocellulosic biomass and formic acid was gasified separately and the highest hydrogen yield was obtained in the case of 5 wt% of formic acid (10.79 mol H2/kg (DAF-BL)). Overally, SCWG dramatically reduced the chemical oxygen demand of BL to 76% using 5 wt% of formic acid.  相似文献   

2.
Supercritical water gasification of alkaline black liquor was investigated in a continuous flow system. The experiments were carried out at 400–600 °C, 25 MPa, with residence times ranging from 4.94 to 13.71 s. The results showed that the increase of temperature and residence time and the decrease of feeding concentration enhanced the gasification. The gaseous product contained high level of hydrogen (40.26–61.02%). Maximum COD removal efficiency (88.69%) was obtained at 600 °C. The alkalis in black liquor were found to be precipitated in the reactor during the gasification, which decreased the pH of the effluent to the neutral region (6.4–8.0). The precipitated alkalis were dissolved in the water when the fluid temperature in the reactor was cooled to about 360 °C which increased the pH of the effluent to 11.0. A simplified kinetic study for COD removal efficiency was done by the pseudo-first order reaction assumption. The apparent activated energy was 74.38 kJ/mol and the apparent pre-exponential factor was 104.05 s−1.  相似文献   

3.
Supercritical water gasification (SCWG) is a promising innovative black liquor handling method. The low concentration of black liquor is a burden for the system scale and investment cost. In this study, we introduced black liquor evaporator to increase the concentration using self-generated steam and power, and studied its influence on the energy and exergy efficiency. The results showed that increasing black liquor concentration from 10 wt% to 20 wt% reduced the energy efficiency but increased the exergy efficiency of the system without evaporator. With the evaporator, an optimal target concentration existed for the exergy efficiency owing to the influence of the target concentration on the balance between the energy consumption and saving brought by the evaporator. With black liquor condensed from 15 wt% to 21.82 wt%, maximum exergy efficiency of the system (41.95%) was obtained. For lower-concentration black liquor, more water needs to be evaporated to get the optimal concentration and evaporator was more desired because it brought greater improvement on the exergy efficiency. The increasing effect number of multi-effect evaporator shifted the optimal concentration to higher values, which increased from 19.93 wt% to 23.13 wt% when the effect number increased from 4 to 7. The exergy efficiency of the system was also improved, and the improvement was more significant at higher target concentration.  相似文献   

4.
CO2 gasification of petroleum coke using black liquor as a catalyst was performed in a thermogravimetric analyzer (TGA) under temperatures 1223–1673 K at ambient pressure to evaluate the effect of black liquor loading on petroleum coke gasification. It was found that the gasification reactivity of petroleum coke was improved greatly by black liquor. The gasification reactivity was affected by different loading methods in the order: wet grinding > dry grinding > physical impregnation > dry mix. The catalytic activity of black liquor was higher than that of pure alkali metal. The effect of temperature on the gasification reactivity of petroleum coke was changed by black liquor. The reactivity reaches its maximum at 1573 K. The reactivity of petroleum coke was found higher than that of Shenfu coal when black liquor loading is 5 wt.% (of petroleum coke), clearly demonstrating that black liquor could be an effective catalyst for petroleum coke gasification.  相似文献   

5.
Alkali metals inherent in black liquor (BL) have strong catalytic activity during gasification. A catalytic co-gasification process based on BL with pyrolysis oil (PO) has the potential to be a part of efficient and fuel-flexible biofuel production systems. The objective of the paper is to investigate how adding PO into BL alters fuel conversion under gasification conditions. First, the conversion times of single fuel droplet were observed in a flat flame burner under different conditions. Fuel conversion times of PO/BL mixtures were significantly lower than PO and comparable to BL. Initial droplet size (300–1500 μm) was the main variable affecting devolatilization, indicating control by external heat transfer. Char oxidation was affected by droplet size and the surrounding gas composition. Then, the intrinsic reactivity of char gasification was measured in an isothermal thermogravimetric analyser at T = 993–1133 K under the flow of CO2–N2 mixtures. All the BL-based samples (100% BL, 20% PO/80% BL, and 30% PO/70% BL on mass basis) showed very high char conversion. Conversion rate of char gasification for PO/BL mixtures was comparable to that of pure BL although the fraction of alkali metal in char decreased because of mixing. The reactivities of BL and BL/PO chars were higher than the literature values for solid biomass and coal chars by several orders of magnitude. The combined results suggest that fuel mixtures containing up to 30% of PO on mass basis may be feasible in existing BL gasification technology.  相似文献   

6.
Catalysts are crucial to promote the technical feasibility of supercritical water gasification (SCWG) for H2 production from wet biomass, yet catalysts prepared by conventional methods normally encounter sintering problems in supercritical water. Herein, a series of ZrO2-supported Ni catalysts were tried to be prepared by supercritical water synthesis (SCWS) and evaluated for SCWG in terms of activity and property stability. The SCWS was conducted at 500 °C and 23 MPa using metal nitrates as starting materials. Effect of precursor concentration on property and catalytic performance of the SCWS-prepared catalysts for SCWG of 20 wt% glycerol were systematically studied. XRD, SEM-EDS, TEM and TGA were applied for catalyst characterization. Results verified the successful obtaining of Ni/ZrO2 nanocatalysts with Ni crystals of 30–70 nm and ZrO2 crystals of ~11 nm by the SCWS process, which were found to be active on the WGSR for SCWG to increase the H2 yield as high as 155%. Importantly, the SCWS-prepared Ni/ZrO2 catalysts exhibited excellent property stability and anti-coking ability for SCWG of glycerol.  相似文献   

7.
Hydrogen from waste biomass is considered to be a clean gaseous fuel and efficient for heat and power generation due to its high energy content. Supercritical water gasification is found promising in hydrogen production by avoiding biomass drying and allowing maximum conversion. Waste biomass contains cellulose, hemicellulose and lignin; hence it is essential to understand their degradation mechanisms to engineer hydrogen production in high-pressure systems. Process conditions higher than 374 °C and 22.1 MPa are required for biomass conversion to gases. Reaction temperature, pressure, feed concentration, residence time and catalyst have prominent roles in gasification. This review focuses on the degradation routes of biomass model compounds such as cellulose and lignin at near and supercritical conditions. Some homogenous and heterogeneous catalysts leading to water–gas shift, methanation and other sub-reactions during supercritical water gasification are highlighted. The parametric impacts along with some reactor configurations for maximum hydrogen production and technical challenges encountered during hydrothermal gasification processes are also discussed.  相似文献   

8.
In this study, supercritical water gasification of the selected five biomass samples (cauliflower residue, acorn, tomatoes residue, extracted acorn and hazelnut shell) was investigated. Lignocellulosic feedstocks were gasified in a continuous flow reactor at 600 °C and 35 MPa. The product gas is composed of hydrogen, carbon dioxide, methane, carbon monoxide and a small amount of C2 compounds. Quantitative analysis of product gas was performed by Gas chromatography device. Potassium carbonate (K2CO3) and Trona (Na2CO3·NaHCO3·2H2O) were used as catalysts. Carbon gasification efficiencies were improved by addition of these catalysts into the reacting system. Moreover, carbon gasification efficiency changes with type of biomass that includes different ratio of cellulose, hemicellulose and lignin. The H2 yield (mol gas/kg C in feed) of acorn in the presence of Trona was found to be 7 times higher than that of without catalyst.  相似文献   

9.
Supercritical water gasification is an innovative thermochemical conversion method for converting wet feedstocks into hydrogen-rich gaseous products. The non-catalytic gasification characteristics of Victorian brown coal were investigated in supercritical water by using a novel immersion technique with quartz batch reactors. Various operating parameters such as temperature, feed concentration and reaction time were varied to investigate their effect on the gasification behaviour. Gas yields, carbon gasification efficiency and the total gasification efficiency increased with increasing temperature and reaction time, and decreasing feed concentration. The mole fraction of hydrogen in the product gases was lowest at 600 °C, and increased to over 30 % at a temperature of 800 °C. Varying parameters, especially reaction time, did not improve the coal utilisation for gas production significantly and the measured data showed a large deviation from the equilibrium level.  相似文献   

10.
The use of hydrogen as clean fuel gas in the power generation sector becomes essential to reduce the environmental issues related to conventional fuel usage. By avoiding biomass drying process, supercritical water gasification is considered the most efficient technology in hydrogen production from wastewater sludge. Wastewater sludge is difficult to disposal in its received form since it is often produced with high moisture content, contribute to numerous environmental issues and direct contact with this waste can result in health concerns. The assessment of the treatment and conversion of this material into fuel gas at condition beyond supercritical state (374°C and 22.1 MPa) is required. This paper is discussed the degradation routes of wastewater sludge in supercritical water. Furthermore, it is reviewed the influence of the main operation parameters role in the hydrogen production, which includes reaction temperature, pressure, residence time, feed concentration and catalysts. The development in reactor design and setup for maximum hydrogen production is highlighted. The technical challenges encountered during the conversion process and its solutions are also discussed. In addition, future prospective to optimal and standardization of the supercritical water gasification process is reviewed.  相似文献   

11.
Food waste is a type of municipal solid waste with abundant organic matter. Hydrogen contains high energy and can be produced by supercritical water gasification (SCWG) of organic waste. In this study, food waste was gasified at various reaction times (20–60 min) and temperatures (400 °C-450 °C) and with different food additives (NaOH, NaHCO3, and NaCl) to investigate the effects of these factors on syngas yield and composition. The results showed that the increase in gasification temperature and time improved gasification efficiency. Also, the addition of food additives with Na+ promoted the SCWG of food waste. The highest H2 yield obtained through non-catalytic experiments was 2.0 mol/kg, and the total gas yield was 7.89 mol/kg. NaOH demonstrated the best catalytic performance in SCWG of food waste, and the highest hydrogen production was 12.73 mol/kg. The results propose that supercritical water gasification could be a proficient technology for food waste to generate hydrogen-rich gas products.  相似文献   

12.
中小草浆造纸厂的草浆黑液污染严重,是污染治理的重中之重。文中介绍了与其相关的十余种治理工艺及其优缺点,并对其中已用于工程实际的5种予以了初步经济技术评价。  相似文献   

13.
The quantitative measurement of atomic sodium (Na) release, at high concentration, from a burning black liquor droplet has been demonstrated using a planar laser-induced fluorescence (PLIF) technique, corrected for fluorescence trapping. The local temperature of the particle was measured to be approximately 1700 °C, at a height of 10 mm above a flat flame burner. The PLIF technique was used to assess the temporal release of atomic Na from the combustion of black liquor and compare it with the Na concentration in the remaining smelt. A first-order model was made to provide insight using a simple Plug Flow Reactor model based on the independently measured concentration of residual Na in the smelt as a function of time. This model also required the dilution ratio of the combustion products in the flat flame entrained into the plume gas from the black liquor particle to be estimated. The key findings of these studies are: (i) the peak concentration of atomic Na from the combustion of the black liquor droplets is around 1.4 ppm; (ii) very little atomic Na is present during the drying, devolatilisation or char combustion stages; and (iii) the presence of atomic Na during smelt phase dominates over that from the other combustion stages.  相似文献   

14.
Supercritical water gasification (SCWG) is a promising technology for oil-containing wastewater treatment. This paper aims to establish a reaction kinetic model to provide better guidance for optimal industrial reactor design. The model is developed based on the experimental results obtained from K2CO3-catalyzed SCWG of diesel (the model compound of oil containment in wastewater) at various conditions of 500–650 °C and 15.23–64.45 s. Then the model validation by using the experimental data from other conditions. The validation results showed that the kinetic model can predict the gas concentration with an acceptable deviation. Afterward, the indicators of carbon gasification efficiency and gas yield versus residence time are predicted. The results show that the required residence time for the complete gasification is varied from 214.2 to 2150.8 s when the temperature changes from 500 to 650 °C. Moreover, the reaction rate analysis result indicates that the two reactions contributed most to the hydrogen production are the forward water-gas shift and the reverse CO methanation reaction. Additionally, the sensitivity analysis result reveals that the hydrolysis reaction of diesel has a significant influence at the initial stage, while the CO and CO2 methane reactions play a vital role at the late stage for gas production.  相似文献   

15.
试验研究了不同负荷下不同混合比例的鸡粪与NaOH预处理麦秸的厌氧发酵产气性能和协同作用效果。以鸡粪和2%NaOH预处理后的麦秸作为发酵原料,研究了混合物料在3种负荷和9种混合比例条件下的厌氧发酵产气情况。结果表明:在3种负荷(50,65,80 g/L)中,均是鸡粪和麦秸比例为1∶2时产气效果最佳,其累计产气量分别达到32 000,43 030 mL和50 370 mL;其TS产气率分别达到328.2,356.9,352.8 mL/g,比纯鸡粪相应负荷分别提高了27%,29%,23%。不同比例下,3种负荷中,均是65 g/L时产气效果最好,鸡粪与麦秸的协同作用使累计产气量提高了7%~17.7%。  相似文献   

16.
Supercritical water gasification technology can realize efficient conversion of biomass, coal and other organics into hydrogen rich gas. But the efficiency of non-catalytic gasification at relative low temperature is not high. Besides, as for catalytic gasification, catalysis mechanism is complex. Thus how to improve efficiency and master the catalysis mechanism is a challenging issue. In this thesis, supercritical water gasification of depolymerizing slag experiments with the catalysis of different kinds of catalysts are conducted and the catalysis mechanism is analyzed. The results indicate that catalyst mechanism of K2CO3 is that it can promote the swelling and hydrolysis of lignocellulose and increase the amounts of phenolic intermediates. Ru/Al2O3 presents some different catalytic properties. It facilitates hydrogenation reaction of hydrolysis products, ring-opening reaction and the cleavage of carbon-carbon bonds then enhances gasification degree and increases gasification efficiency. Moreover, the binary catalyst displays a good synergic effect and the catalytic activity is higher than that of any single catalyst since these two catalysts promote various gasification stages. The gasification efficiency and hydrogen yield increase 13.22 mmol g?1 and 66.46% respectively with the synergic catalyst of K2CO3 and Ru/Al2O3.  相似文献   

17.
The aim of this study was to study the conversion of black liquor under hydrothermal conditions and its integration in a pulp mill. Three sulfur-free black liquors produced from caustic soda cooking of prehydrolyzed softwood, prehydrolyzed hardwood and non prehydrolyzed hardwood chips were converted. Experiments were performed in a batch reactor, for temperature between 250 °C and 310 °C, and for holding time between 5 and 120 min. Three phases were formed: an aqueous phase containing monomeric phenolic compounds and the sodium cations, a biocrude containing most of the carbon, and a small amount of gas. The combustion of the biocrude could allow an energy recovery for the mill of up to 70%. The main monomeric compounds identified in aqueous phase were phenol, catechol, guaiacol and syringol, with a total yield up to 28 g kg−1 of dry BL, at 250 °C. Among them, guaiacol was the major product. Sodium recovery was 97 %, slightly better than typical kraft recovery value, and compatible with causticizing. Finally, results obtained with a kraft softwood lignin were compared to those obtained with softwood black liquor. Results show that biocrude yields were greater with black liquor, whereas platform molecules production was higher with lignin. Presence of carbohydrates derivatives in black liquor is identified as a major parameter for biocrude production as it would favor bonding between phenolic species.  相似文献   

18.
Simultaneous measurement of the concentration of released atomic sodium, swelling, surface and internal temperature of a burning black liquor droplet under a fuel lean and rich condition has been demonstrated. Two-dimensional two-colour optical pyrometry was employed to determine the distribution of surface temperature and swelling of a burning black liquor droplet while planar laser-induced fluorescence (PLIF) was used to assess the temporal release of atomic sodium. The key findings of these studies are: (i) the concentration of atomic sodium released during the drying and devolatilisation stages was found to be correlated with the external surface area; and (ii) the insignificant presence of atomic sodium during the char consumption stage shows that sodium release is suppressed by the lower temperature and by the high CO2 content in and around the particle.  相似文献   

19.
小麦秸秆转化为可发酵糖的研究   总被引:2,自引:0,他引:2  
对小麦秸秆水解转化为可发酵糖进行了研究,考察了小麦秸秆预处理方法以及温度、pH值、酶用量、底物浓度和反应时间等因素对小麦秸秆酶水解的影响。试验结果表明,汽蒸加蒽醌方法是较好的预处理方法。酶解最佳工艺为:温度48℃,pH值5.2,酶解时间24h,酶用量与底物的最佳配比0.160:1;底物浓度≥1%,以1.5%~2.5%为宜,此时还原糖得率达32.4%。  相似文献   

20.
Supercritical water fluidized bed (SCWFB) is a new reactor concept for gasification of biomass and coal in supercritical water. In this paper, physical fields, residence time and gas yield in a SCWFB reactor were investigated numerically based on the Eulerian two-fluid method with the kinetic theory of granular flow. A three-step reaction model including steam reforming, water-gas shift and methanation was used to describe the supercritical water gasification of glucose. Distributions of velocity and temperature were obtained, and the results show that the mixing of preheated water and cold glucose solution at the bottom in the bed leads to a region with low solid volume fraction and local swirl flow. In the freeboard, most of reactants flow near the wall and with a velocity much higher than the superficial velocity. The reaction rates and conversion ratio of glucose at different regions in the reactor were also obtained. Distribution of residence time was found to be non-uniform, and its effect on glucose gasification was analyzed. In addition, the effects of operation condition and reactor structure on gas yield and residence time were studied to explore best operation rules for increasing gas yield. The results from this work may be of interest to operators attempting to obtain more information in the reactor and provide instruction for the design of SCWFB reactor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号