首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to improve the hydrogenation/dehydrogenation properties of the Mg/MgH2 system, the nickel hydride complex NiHCl(P(C6H11)3)2 has been added in different amounts to MgH2 by planetary ball milling. The hydrogen storage properties of the formed composites were studied by different thermal analyses methods (temperature programmed desorption, calorimetric and pressure-composition-temperature analyses). The optimal amount of the nickel complex precursor was found to be of 20 wt%. It allows to homogeneously disperse 1.8 wt% of nickel active species at the surface of the Mg/MgH2 particles. After the decomposition of the complex during MgH2 dehydrogenation, the formed composite is stable upon cycling at low temperature. It can release hydrogen at 200 °C and absorb 6.3 wt% of H2 at 100 °C in less than 1 h. The significantly enhanced H2 storage properties are due to the impact of the highly dispersed nickel on both the kinetics and thermodynamics of the Mg/MgH2 system. The hydrogenation and dehydrogenation enthalpies were found to be of −65 and 63 kJ/mol H2 respectively (±75 kJ/mol H2 for pure Mg/MgH2) and the calculated apparent activation energies of the hydrogen uptake and release processes are of 22 and 127 kJ/mol H2 respectively (88 and 176 kJ/mol H2 for pure Mg/MgH2). The change in the thermodynamics observed in the formed composite is likely to be due to the formation of a Mg0.992Ni0.008 phase during dehydrogenation/hydrogenation cycling. The impact of another hydride nickel precursor in which chloride has been replaced by a borohydride ligand, namely NiH(BH4)(P(C6H11)3)2, is also reported.  相似文献   

2.
In this study, a low-cost biomass charcoal (BC)-based nickel catalyst (Ni/BC) was introduced into the MgH2 system by ball-milling. The study demonstrated that the Ni/BC catalyst significantly improved the hydrogen desorption and absorption kinetics of MgH2. The MgH2 + 10 wt% Ni/BC-3 composite starts to release hydrogen at 187.8 °C, which is 162.2 °C lower than the initial dehydrogenation temperature of pure MgH2. Besides, 6.04 wt% dehydrogenation can be achieved within 3.5 min at 300 °C. After the dehydrogenation is completed, MgH2 + 10 wt% Ni/BC-3 can start to absorb hydrogen even at 30 °C, which achieved the absorption of 5 wt% H2 in 60 min under the condition of 3 MPa hydrogen pressure and 125 °C. The apparent activation energies of dehydrogenation and hydrogen absorption of MgH2 + 10 wt% Ni/BC-3 composites were 82.49 kJ/mol and 23.87 kJ/mol lower than those of pure MgH2, respectively, which indicated that the carbon layer wrapped around MgH2 effectively improved the cycle stability of hydrogen storage materials. Moreover, MgH2 + 10 wt% Ni/BC-3 can still maintain 99% hydrogen storage capacity after 20 cycles. XRD, EDS, SEM and TEM revealed that the Ni/BC catalyst evenly distributed around MgH2 formed Mg2Ni/Mg2NiH4 in situ, which act as a “hydrogen pump” to boost the diffusion of hydrogen along with the Mg/MgH2 interface. Meanwhile, the carbon layer with fantastic conductivity enormously accelerated the electron transfer. Consequently, there is no denying that the synergistic effect extremely facilitated the hydrogen absorption and desorption kinetic performance of MgH2.  相似文献   

3.
As a high-density solid-state hydrogen storage material, magnesium hydride (MgH2) is promising for hydrogen transportation and storage. Yet, its stable thermodynamics and sluggish kinetics are unfavorable for that required for commercial application. Herein, nickel/vanadium trioxide (Ni/V2O3) nanoparticles with heterostructures were successfully prepared via hydrogenating the NiV-based two-dimensional layered double hydroxide (NiV-LDH). MgH2 + 7 wt% Ni/V2O3 presented more superior hydrogen absorption and desorption performances than pure MgH2 and MgH2 + 7 wt% NiV-LDH. The initial discharging temperature of MgH2 was significantly reduced to 190 °C after adding 7 wt% Ni/V2O3, which was 22 and 128 °C lower than that of 7 wt% NiV-LDH modified MgH2 and additive-free MgH2, respectively. The completely dehydrogenated MgH2 + 7 wt% Ni/V2O3 charged 5.25 wt% H2 in 20 min at 125 °C, while the hydrogen absorption capacity of pure MgH2 only amounted to 4.82 wt% H2 at a higher temperature of 200 °C for a longer time of 60 min. Moreover, compared with MgH2 + 7 wt% NiV-LDH, MgH2 + 7 wt% Ni/V2O3 shows better cycling performance. The microstructure analysis indicated the heterostructural Ni/V2O3 nanoparticles were uniformly distributed. Mg2Ni/Mg2NiH4 and metallic V were formed in-situ during cycling, which synergistically tuned the hydrogen storage process in MgH2. Our work presents a facile interfacial engineering method to enhance the catalytic activity by constructing a heterostructure, which may provide the mentality of designing efficient catalysts for hydrogen storage.  相似文献   

4.
The chain-like carbon nanotubes (CNTs) decorated with CoFeB (CoFeB/CNTs) prepared by oxidation-reduction method is introduced into MgH2 to facilitate its hydrogen storage performance. The addition of CoFeB/CNTs enables MgH2 to start desorbing hydrogen at only 177 °C. Whereas pure MgH2 starts hydrogen desorption at 310 °C. The dehydrogenation apparent activation energy of MgH2 in CoFeB/CNTs doped-MgH2 composite is only 83.2 kJ/mol, and this is about 59.5 kJ/mol lower than that of pure MgH2. In addition, the completely dehydrogenated MgH2−10 wt% CoFeB/CNTs sample can start to absorb hydrogen at only 30 °C. At 150 °C and 5 MPa H2, the MgH2 in CoFeB/CNTs doped-MgH2 composite can absorb 6.2 wt% H2 in 10 min. The cycling kinetics can remain rather stable up to 20 cycles, and the hydrogen storage capacity retention rate is 98.5%. The in situ formation of Co3MgC, Fe, CoFe and B caused by the introduction of CoFeB/CNTs can provide active and nucleation sites for the dehydrogenation/rehydrogenation reactions of MgH2. Moreover, CNTs can provide hydrogen diffusion pathways while also enhancing the thermal conductivity of the sample. All of these can facilitate the dehydrogenation/rehydrogenation performance and cyclic stability of MgH2.  相似文献   

5.
The Mg/MAX-phase composite materials are synthesized by reactive ball milling (RBM) in a hydrogen gas atmosphere, and phase composition and dehydrogenation performance of the composites are investigated. The Ti3AlC2 MAX-phase markedly reduces the dehydrogenation temperature of the MgH2 to 246 °C for the sample with 5 wt% of Ti3AlC2 MAX-phase and to 236 °C for the sample with 7 %wt. of Ti3AlC2 MAX-phase. The highest hydrogen capacity of 5.6 wt% was achieved for the Mg+7 wt% MAX-phase composite. The kinetic mechanism of the dehydrogenation of the composites is investigated by the Johnson-Mehl-Avrami-Kolmogorov (JMAK) technique.  相似文献   

6.
High dehydrogenation temperature and slow dehydrogenation kinetics impede the practical application of magnesium hydride (MgH2) serving as a potential hydrogen storage medium. In this paper, Fe–Ni catalyst modified three-dimensional graphene was added to MgH2 by ball milling to optimize the hydrogen storage performance, the impacts and mechanisms of which are systematically investigated based on the thermodynamic and kinetic analysis. The MgH2+10 wt%Fe–Ni@3DG composite system can absorb 6.35 wt% within 100 s (300 °C, 50 atm H2 pressure) and release 5.13 wt% within 500 s (300 °C, 0.5 atm H2 pressure). In addition, it can absorb 6.5 wt% and release 5.7 wt% within 10 min during 7 cycles, exhibiting excellent cycle stability without degradation. The absorption-desorption mechanism of MgH2 can be changed by the synergistic effects of the two catalyst materials, which significantly promotes the improvement of kinetic performance of dehydrogenation process and reduces the hydrogen desorption temperature.  相似文献   

7.
Nanostructuring and catalyzing are effective methods for improving the hydrogen storage properties of MgH2. In this work, transition-metal-carbides (TiC, ZrC and WC) are introduced into Mg–Ni alloy to enhance its hydrogen storage performance. 5 wt% transition-metal-carbide containing Mg95Ni5 (atomic ratio) nanocomposites are prepared by mechanical milling pretreatment followed by hydriding combustion synthesis and mechanical milling process, and the synergetic enhancement effects of Mg2NiH4 and transition-metal-carbides are investigated systematically. Due to the inductive effect of Mg2NiH4 and charge transfer effect between Mg/MgH2 and transition-metal-carbides, Mg95Ni5-5 wt.% transition-metal-carbide samples all exhibit excellent hydrogen storage kinetic at moderate temperature and start to release hydrogen around 216 °C. Among them, 2.5 wt% H2 (220 °C) and 4.7 wt% H2 (250 °C) can be released from the Mg95Ni5-5 wt.% TiC sample within 1800 s. The unique mosaic structure endows the Mg95Ni5-5 wt.% TiC with excellent structural stability, thus can reach 95% of saturated hydrogen capacity within 120 s even after 10 cycles of de-/hydrogenation at 275 °C. And the probable synergistic enhancement mechanism for hydrogenation and dehydrogenation is proposed.  相似文献   

8.
Herein, a novel flower-like Ni MOF with good thermostability is introduced into MgH2 for the first time, and which demonstrates excellent catalytic activity on improving hydrogen storage performance of MgH2. The peak dehydrogenation temperature of MgH2-5 wt.% Ni MOF is 78 °C lower than that of pure MgH2. Besides, MgH2-5 wt.% Ni MOF shows faster de/hydrogenation kinetics, releasing 6.4 wt% hydrogen at 300 °C within 600 s and restoring about 5.7 wt% hydrogen at 150 °C after dehydrogenation. The apparent activation energy for de/hydrogenation reactions are calculated to be 107.8 and 42.8 kJ/mol H2 respectively, which are much lower than that of MgH2 doped with other MOFs. In addition, the catalytic mechanism of flower-like Ni MOF is investigated in depth, through XRD, XPS and TEM methods. The high catalytic activity of flower-like Ni MOF can be attributed to the combining effect of in-situ generated Mg2Ni/Mg2NiH4, MgO nanoparticles, amorphous C and remaining layered Ni MOF. This research extends the knowledge of elaborating efficient catalysts via MOFs in hydrogen storage materials.  相似文献   

9.
To improve the dehydrogenation/hydrogenation performance of magnesium hydride (MgH2), a nickel-vanadium bimetallic oxide (NiV2O6) was prepared by a simple hydrothermal method using ammonium metavanadate and nickel nitrate as raw materials. This oxide was used to improve the hydrogen storage performance of MgH2. NiV2O6 reacted with Mg to form Mg2Ni and V2O5; Mg2Ni and V2O5 played an important role in improving the hydrogen storage properties of MgH2. The NiV2O6-doped MgH2 had an excellent hydrogen absorption and desorption kinetics performance, and it could absorb 5.59 wt% of hydrogen within 50 min at 150 °C and release about 5.3 wt% of hydrogen within 12 min. The apparent activation energies for the dehydrogenation and hydrogenation of MgH2-NiV2O6 were 92.9 kJ mol?1 and 24.9 kJ mol?1, respectively. These were 21.7% and 66.3% lower than those of MgH2, respectively. The mechanism analysis demonstrated that the improved kinetic properties of MgH2 resulted from the heterogeneous catalysis of vanadium and nickel.  相似文献   

10.
Bimetallic catalysts possess unique physical and chemical properties that distinct from the individual, which offer the opportunity to ameliorate the hydrogen storage properties of MgH2. Herein, a Ni3Fe catalyst homogeneously loaded on the surface of reduced graphene oxide (Ni3Fe/rGO) was prepared based on layered double hydroxide (LDH) precursor. The novel Ni3Fe/rGO nano-catalyst was subsequently doped into MgH2 to improve its hydrogen storage performance. The MgH2-5 wt.% Ni3Fe/rGO composite requires only 100 s to reach 6 wt% hydrogen capacity at 100 °C, while for MgH2 doped with 5 wt% Ni3Fe, Ni/rGO and Fe/rGO all require more than 500 s to uptake 3 wt% hydrogen under the same condition. The onset dehydrogenation temperature of the MgH2-5 wt.% Ni3Fe/rGO composite is about 185 °C, much lower than that of the MgH2 doped with 5 wt% Ni3Fe (205 °C), Ni/rGO (210 °C) and Fe/rGO (250 °C), and it can release H2 completely even in 1000 s at 275 °C. Besides, the MgH2-5 wt% Ni3Fe/rGO displays the lowest dehydrogenation apparent activation energy of 59.3 kJ/mol calculated by Kissinger equation. The synergetic effect attributing to rGO, in-situ formed active species of Mg2Ni and Fe is in charge of the excellent catalytic effect on hydrogen storage behavior of MgH2. Meanwhile, this study supplies innovative insights to design high efficiency catalysts based on the LDH precursor.  相似文献   

11.
MgH2 has been extensively regarded as a low-cost hydrogen storage material with high gravimetric hydrogen capacity of approximately 7.6 wt%. However, the hydrogen release and absorption kinetics in MgH2 still needs further improving. For the first time, the catalytic impacts of a new dual-cation metal fluoride K2TaF7 upon the hydrogen storage characteristics of MgH2 have been investigated in this work. With only 1 wt% K2TaF7 dopant, the initial dehydrogenation temperature of MgH2 was lowered by about 130 °C, releasing more than 7.3 wt% hydrogen totally. The desorption activation energy of MgH2 + 1 wt% K2TaF7 composite was decreased to 107.2 ± 1.2 kJ mol?1. Besides, at 190 °C, the dehydrogenated MgH2 + 1 wt% K2TaF7 sample could absorb 6.56 wt% H2, while pristine MgH2 re-absorbed only 3.45 wt% H2. Further studies revealed that K2TaF7 could react with MgH2 during dehydrogenation and produce symbiotic hydrides KMgH3 and TaH0.8, which could play the role of hydrogen pumps during hydrogen release and uptake. The cooperative catalysis between the hydrogen pump effect and the active interface in the multi-hydride area significantly enhanced the reversible hydrogen storage in the MgH2+1 wt% K2TaF7 composite. This study provides new thinking for novel catalysts to elevate the hydrogen storage performance of MgH2.  相似文献   

12.
This paper presents improving the hydrogen absorption and desorption of Mg(In) solid solution alloy through doped with CeF3. A nanocomposite of Mg0.95In0.05-5 wt% CeF3 was prepared by mechanical ball milling. The microstructures were systematically investigated by X-ray diffraction, scanning electron microscopy, scanning transmission electron microscopy. And the hydrogen storage properties were evaluated by isothermal hydrogen absorption and desorption, and pressure-composition-isothermal measurements in a temperature range of 230 °C–320 °C. The mechanism of hydrogen absorption and desorption of Mg0.95In0.05 solid solution is changed by the addition of CeF3. Mg0.95In0.05-5 wt% CeF3 nanocomposite transforms to MgH2, MgF2 and intermetallic compounds of MgIn and CeIn3 by hydrogenation. Upon dehydrogenation, MgH2 reacts with the intermetallic compounds of MgIn and CeIn3 forming a pseudo-ternary Mg(In, Ce) solid solution, which is a fully reversible reaction with a reversible hydrogen capacity~4.0 wt%. The symbiotic nanostructured CeIn3 impedes the agglomeration of MgIn compound, thus improving the dispersibility of element In, and finally improving the reversibility of hydrogen absorption and desorption of Mg(In) solution alloy. For Mg0.95In0.05-5 wt% CeF3 nanocomposite, the dehydriding enthalpy is reduced to about 66.1 ± 3.2 kJ⋅mol−1⋅H2, and the apparent activation energy of dehydrogenation is significantly lowered to 71.9 ± 10.0 kJ⋅mol−1⋅H2, a reduction of ~73 kJ⋅mol−1⋅H2 relative to that for Mg0.95In0.05 solid solution. As a result, Mg0.95In0.05-5 wt% CeF3 nanocomposite can release ~57% H2 in 10 min at 260 °C. The improvements of hydrogen absorption and desorption properties are mainly attributed to the reversible phase transition of Mg(In, Ce) solid solution combing with the multiphase nanostructure.  相似文献   

13.
Reversible hydrogen storage in MgH2 under mild conditions is a promising way for the realization of “Hydrogen Economy”, in which the development of cheap and highly efficient catalysts is the major challenge. Herein, A two-dimensional layered Fe is prepared via a facile wet-chemical ball milling method and has been confirmed to greatly enhance the hydrogen storage performance of MgH2. Minor addition of 5 wt% Fe nanosheets to MgH2 decreases the onset desorption temperature to 182.1 °C and enables a quick release of 5.44 wt% H2 within 10 min at 300 °C. Besides, the dehydrogenated sample takes up 6 wt% H2 in 10 min under a hydrogen pressure of 3.2 MPa at 200 °C. With the doping of Fe nanosheets, the apparent activation energy of the dehydrogenation reaction for MgH2 is reduced to 40.7 ± 1.0 kJ mol−1. Further ab initio calculations reveal that the presence of Fe extends the Mg–H bond length and reduces its bond strength. We believe that this work would shed light on designing plain metal for catalysis in the area of hydrogen storage and other energy-related issues.  相似文献   

14.
Magnesium hydride, as a potential solid state hydrogen carrier has attracted great attention around the world especially in the energy storage domain due to the high hydrogen storage capacity and the good cycling stability. But kinetic and thermodynamic barriers also impede the practical application and development of MgH2. Nanoscale catalysts are deemed to be the most effective measure to overcome the kinetic barrier and lower the temperature required for hydrogen release in MgH2. NbN nanoparticles (~20 nm) with intrinsic Nb3+-N and Nb5+-N were prepared using the molten salt method and used as catalysts in the MgH2 system. It is found that the NbN nanoparticles exhibit a superior catalytic effect on de/rehydrogenation kinetics for the MgH2/Mg system. About 6.0 wt% hydrogen can be liberated for the MgH2+5NbN sample within 5 min at 300 °C, and it takes 12 min to desorb the same amount of hydrogen at 275 °C. Meanwhile, the MgH2+5NbN sample can absorb 6.0 wt% hydrogen within 16 min at 150 °C, and absorb 5.0 wt% hydrogen within 24 min even at 100 °C. Particularly, the catalyzed samples exhibit excellent hydrogen absorption/desorption kinetic stability. After multiple cycles, there is no kinetic attenuation and the hydrogen capacity remains at about 6.0 wt%. It is demonstrated that the NbN nanoparticles with intrinsic multiple valence can be the critical effect in improving the hydrogen storage kinetics of MgH2. The stability of Nb4N3 phase and Nb3+-N and Nb5+-N valence states can ensure a stable catalytic effect in the system.  相似文献   

15.
Extensive researches are being conducted to improve the high dehydrogenation temperature and sluggish hydrogen release rate of magnesium hydride (MgH2) for better industrial application. In this study, LiNbO3, a catalyst composed of alkali metal Li and transition metal Nb, was prepared through a direct one-step hydrothermal synthesis, which remarkably improved the hydrogen storage performance of MgH2. With the addition of 6 wt% LiNbO3 in MgH2, the initial dehydrogenation temperature decreases from 300 °C to 228 °C, representing a drop of almost 72 °C compared to milled MgH2. Additionally, the MgH2-6 wt.% LiNbO3 composite can quickly release 5.45 wt% of H2 within 13 min at 250 °C, and absorbed about 3.5 wt% of H2 within 30 min at 100 °C. It is also note that LiNbO3 shows better catalytic effect compared to solely adding Li2O or Nb2O5. Furthermore, the activation energy of MgH2-6 wt.% LiNbO3 decreased by 44.37% compared to milled MgH2. The enhanced hydrogen storage performance of MgH2 is attributed to the in situ formation of Nb-based oxides in the presence of LiNbO3, which creates a multielement and multivalent chemical environment.  相似文献   

16.
Magnesium is considered as a promising candidate for hydrogen storage due to its high storage capacity (theoretical value ~ 7.6 wt%). Nanocomposites of Magnesium hydride and activated charcoal (AC) were prepared using ball milling method. These nanocomposites were characterized by XRD, TGA, DSC and SEM techniques. The TGA analysis show that the MgH2-5 wt% AC nanocomposite exhibits dehydrogenation capacity of 7.45 wt% (which is very close to the storage capacity of MgH2) and starts release of hydrogen at 140 °C temperature. The results from the Kissinger plot from DSC result showed that the activation energy for hydrogen desorption of MgH2 with 5 wt% AC was reduced compared to those of as-received.  相似文献   

17.
Magnesium-based hydrogen storage materials (MgH2) are promising hydrogen carrier due to the high gravimetric hydrogen density; however, the undesirable thermodynamic stability and slow kinetics restrict its utilization. In this work, we assist the de/hydrogenation of MgH2 via in situ formed additives from the conversion of an MgNi2 alloy upon de/hydrogenation. The MgH2–16.7 wt%MgNi2 composite was synthesized by ball milling of Mg powder and MgNi2 alloy followed by a hydrogen combustion synthesis method, where most of the Mg converted to MgH2, and the others reacted with the MgNi2 generating Mg2NiH4, which produced in situ Mg2Ni during dehydrogenation. Results showed that the Mg2Ni and Mg2NiH4 could induce hydrogen absorption and desorption of the MgH2, that it absorbed 2.5 wt% H2 at 473 K, much higher than that of pure Mg, and the dehydrogenation capacity increased by 2.6 wt% at 573 K. Besides, the initial dehydrogenation temperature of the composite under the promotion of Mg2NiH4 decreased greatly by 100 K, whereas it is 623 K for MgH2. Furthermore, benefiting from the catalyst effect of Mg2NiH4 during dehydrogenation, the apparent activation energy of the composite reduced to 73.2 kJ mol−1 H2 from 129.5 kJ mol−1 H2.  相似文献   

18.
Reduced graphene-oxide-supported nickel (Ni@rGO) nanocomposite catalysts were synthesized, and incorporated into magnesium (Mg) hydrogen storage materials with the aim of improving the hydrogen storage properties of these materials. The experimental results revealed that the catalytic effect of the Ni@rGO nanocomposite on Mg was more effective than that of single nickel (Ni) nanoparticles or graphene. When heated at 100 °C, the Mg–Ni and Mg–Ni@rGO composites absorbed 4.70 wt% and 5.48 wt% of H2, respectively, whereas the pure Mg and Mg@rGO composite absorbed almost no hydrogen. The addition of the Ni@rGO composite as a catalyst yielded significant improvement in the hydrogen storage property of the Mg hydrogen storage materials. The apparent activation energy of the pure Mg sample (i.e., 163.9 kJ mol−1) decreased to 139.7 kJ mol−1 and 123.4 kJ mol−1, respectively, when the sample was modified with single rGO or Ni nanoparticles. Under the catalytic action of the Ni@rGO nanocomposites, the value decreased further to 103.5 kJ mol−1. The excellent hydrogen storage properties of the Mg–Ni@rGO composite were attributed to the catalytic effects of the highly surface-active Ni nanoparticles and the unique structure of the composite nanosheets.  相似文献   

19.
In order to improve the hydrogen storage performance of MgH2, graphene and CeF3 co-catalyzed MgH2 (hereafter denoted as MgH2+CeF3@Gn) were prepared by wet method ball milling and hydriding, which is a simple and time-saving method. The effect of CeF3@Gn on the hydrogen storage behavior of MgH2 was investigated. The experimental results showed that co-addition of CeF3@Gn greatly decreased the hydrogen desorption/absorption temperature of MgH2, and remarkably improved the dehydriding/hydriding kinetics of MgH2. The onset hydrogen desorption temperature of Mg + CeF3@Gn is 232 °C,which is 86 °C lower than that of as-milled undoped MgH2, and its hydrogen desorption capacity reaches 6.77 wt%, which is 99% of its theoretical capacity (6.84 wt%). At 300 °C and 200 °C the maximum hydrogen desorption rates are 79.5 and 118 times faster than that of the as-milled undoped MgH2. Even at low temperature of 150 °C, the dedydrided sample (Mg + CeF3@Gn) also showed excellent hydrogen absorption kinetics, it can absorb 5.71 wt% hydrogen within 50 s, and its maximum hydrogen absorption rate reached 15.0 wt% H2/min, which is 1765 times faster than that of the undoped Mg. Moreover, no eminent degradation of hydrogen storage capacity occurred after 15 hydrogen desorption/absorption cycles. Mg + CeF3@Gn showed excellent hydrogen de/absorption kinetics because of the MgF2 and CeH2-3 that are formed in situ, and the synergic catalytic effect of these by-products and unique structure of Gn.  相似文献   

20.
Transition metal-based oxides have been proven to have a substantial catalytic influence on boosting the hydrogen sorption performance of MgH2. Herein, the catalytic action of Ni6MnO8@rGO nanocomposite in accelerating the hydrogen sorption properties of MgH2 was investigated. The MgH2 + 5 wt% Ni6MnO8@rGO composites began delivering H2 at 218 °C, with about 2.7 wt%, 5.4 wt%, and 6.6 wt% H2 released within 10 min at 265 °C, 275 °C, and 300 °C, respectively. For isothermal hydrogenation at 75 °C and 100 °C, the dehydrogenated MgH2 + 5 wt% Ni6MnO8@rGO sample could absorb 1.0 wt% and 3.3 wt% H2 in 30 min, respectively. Moreover, as compared to addition-free MgH2, the de/rehydrogenation activation energies for doped MgH2 composites were lowered to 115 ± 11 kJ/mol and 38 ± 7 kJ/mol, and remarkable cyclic stability was reported after 20 cycles. Microstructure analysis revealed that the in-situ formed Mg2Ni/Mg2NiH4, Mn, MnO2, and reduced graphene oxide synergically enhanced the hydrogen de/absorption properties of the Mg/MgH2 system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号