首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The application of microalgal biomass for fermentation has been highlighted as a means of producing a range of value-added biofuels and chemicals. On the other hand, the microalgal residue from the fermentation process still contains as much as 50% organic contaminants, which can be a valuable substrate for further bioenergy recovery. In this study, a microbial fuel cell and automatic external load control by maximum power point tracking (MPPT) were implemented to harvest the electrical energy from waste fermented microalgal residue (FMR). The MFC with MPPT produced the highest amount of energy (1.82 kJ/L) compared to the other MFCs with fixed resistances: 0.98 (1000 Ω), 1.16 (500 Ω), and 1.17 kJ/L (300 Ω). The MFC with MPPT also showed the highest maximum power density (88.6 mW/m2) and COD removal efficiency (620.0 mg COD/L removal with 85% removal efficiency). The implementation of MPPT gained an approximate 12.9% energy yield compared to the previous fermentation stage. These results suggest that FMR can be an appropriate feedstock for electrical energy recovery using MFCs, and the combined fermentation and MFC system improves significantly the energy recovery and treatment efficiency from FMR.  相似文献   

2.
3-D highly conductive polyvinyl formaldehyde sponges functionalized with acrylamide are fabricated using polyvinyl alcohol with varying concentrations of graphite nanopowder. The properties of the fabricated anodes are analyzed and its application in microbial fuel cells is evaluated. A comparative study with Graphite felt is also performed to evaluate its commercial viability. The presence of Hydroxyl and Amine functional groups enhanced the hydrophilic and biocompatible nature of the synthesized anodes. The phylogenetic analysis substantiated the biocompatible nature and mercury porosimetry showed macroporous nature of the fabricated anode. The highest power density of ~8 W/m2 is recorded for C10 establishing solid biofilm formation. A ~94% COD removal revealed the versatility of the anode for MFC based wastewater treatment. The MFC performance was twice than that of control and was also highest among the most reported modified 3-D anodes. The durability study displayed the commercial opportunity of the anode for real-time MFC operation.  相似文献   

3.
The biological production of hydrogen by microalgae is considered as an advantageous process. However, its yields are sometimes limited. To go beyond this limit, the improvement of the H2 generation rate by Spirulina was studied via an electrochemical photo-bioreactor (EPBR). This EPBR led to hydrogen evolution rates of up to 27.49 and 13.37 mol of H2.d−1.m−3 for the anode and cathode chambers, respectively, under 0.3 V voltage and ~2.5 mA current. These results represent about a 4-fold increase compared to the H2 production rate recorded without the application of a voltage. This increase in bio-hydrogen production is correlated with a drop in the concentration of NADPH. The Electrochemical Sequential Batch Reactor (ESRB) provided a more interesting total production rate which was 2.65 m3 m−3 d−1, compared to the batch mode, which gave 1.2 m3 m−3.d−1. The results show, for the first time, the boosting effect of the voltage on the metabolism of H2 production by the Spirulina strain.  相似文献   

4.
Although various pretreatment methods are employed to promote sludge hydrolysis and thereby promoting methane production in the subsequent microbial electrolysis cell assisted anaerobic digestion (MEC-AD) system, the questions arise are, “which pretreatment method on waste activated sludge (WAS) maximises the sludge hydrolysis and what is the optimal applied voltage on anaerobic digestion (AD) to stimulates the direct interspecies electron transfer (DIET) performance and thereby accelerating the methane production fed with pretreated WAS?” was still unanswered. Herein, firstly, a series of pretreatment methods to hydrolyse and mineralise the organic matter of WAS was performed to evaluate solubilization efficiency and thereafter, the influence of different applied voltages (0.3 V, 0.6 V, and 0.9 V) on coupled MEC-AD reactors fed with pretreated WAS was investigated to apprehend the DIET promotion for methane production. The results indicated that in MEC-AD reactors, the methane yield increased by 27.2%, 44.8%, and 37.3% when the applied voltages were 0.3 V, 0.6 V, and 0.9 V, respectively. Therefore, the alkaline-thermal pretreatment (ATP) enhanced the sludge hydrolysis in WAS, followed by an applied voltage of 0.6 V in the MEC-AD reactor fed with pretreated WAS, enhanced methane production under DIET stimulation induced by the increased abundance of electroactive microorganisms (EAM) and the advanced electron transfer. Besides, the energy balance estimation validates that with an applied voltage of 0.6 V in MEC-AD could achieve higher net energy input.  相似文献   

5.
This study aimed to evaluate the effect of the organic loading rate (OLR) (60, 90, and 120 g Chemical Oxygen Demand (COD). L?1. d?1) on hydrogen production from cheese whey and glycerol fermentation as cosubstrates (50% cheese whey and 50% glycerol on a COD basis) in a thermophilic fluidized bed reactor (55 °C). The increase in the OLR to 90 gCOD.L?1. d?1 favored the hydrogen production rate (HPR) (3.9 L H2. L?1. d?1) and hydrogen yield (HY) (1.7 mmol H2. gCOD?1app) concomitant with the production of butyric and acetic acids. Employing 16S rRNA gene sequencing, the highest hydrogen production was related to the detection of Thermoanaerobacterium (34.9%), Pseudomonas (14.5%), and Clostridium (4.7%). Conversely, at 120 gCOD.L?1. d?1, HPR and HY decreased to 2.5 L H2. L?1. d?1 and 0.8 mmol H2. gCOD?1app, respectively, due to lactic acid production that was related to the genera Thermoanaerobacterium (50.91%) and Tumebacillus (23.56%). Cofermentation favored hydrogen production at higher OLRs than cheese whey single fermentation.  相似文献   

6.
The objective of this study was to evaluate the effects of hydraulic retention time (HRT) (8–1 h) on H2 production from sugarcane juice (5000 mg COD L−1) in mesophilic (30 °C, AFBR-30) and thermophilic (55 °C, AFBR-55) anaerobic fluidized bed reactors (AFBRs). At HRTs of 8 and 1 h in AFBR-30, the H2 production rates were 60 and 116 mL H2 h−1 L−1, the hydrogen yields were 0.60 and 0.10 mol H2 mol−1 hexose, and the highest bacterial diversities were 2.47 and 2.34, respectively. In AFBR-55, the decrease in the HRT from 8 to 1 h increased the hydrogen production rate to 501 mL H2 h−1 L−1 at the HRT of 1 h. The maximum hydrogen yield of 1.52 mol H2 mol−1 hexose was observed at the HRT of 2 h and was associated with the lowest bacterial diversity (0.92) and highest bacterial dominance (0.52).  相似文献   

7.
In recent times, biohydrogen production from microalgal feedstock has garnered considerable research interests to sustainably replace the fossil fuels. The present work adapted an integrated approach of utilizing deoiled Scenedesmus obliquus biomass as feedstock for biohydrogen production and valorization of dark fermentation (DF) effluent via biomethanation. The microalgae was cultivated under different CO2 concentration. CO2-air sparging of 5% v/v supported maximum microalgal growth and carbohydrate production with CO2 fixation ability of 727.7 mg L?1 d?1. Thereafter, lipid present in microalgae was extracted for biodiesel production and the deoiled microalgal biomass (DMB) was subjected to different pretreatment techniques to maximize the carbohydrate recovery and biohydrogen yield. Steam heating (121 °C) in coherence with H2SO4 (0.5 N) documented highest carbohydrate recovery of 87.5%. DF of acid-thermal pretreated DMB resulted in maximum H2 yield of 97.6 mL g?1 VS which was almost 10 times higher as compared to untreated DMB (9.8 mL g?1 VS). Subsequent utilization of DF effluent in biomethanation process resulted in cumulative methane production of 1060 mL L?1. The total substrate energy recovered from integrated biofuel production system was 30%. The present study envisages a microalgal biorefinery to produce biohydrogen via DF coupled with concomitant CO2 sequestration.  相似文献   

8.
Developing cheap and highly durable non-noble metal catalysts for water electrolysis to sustainably produce hydrogen as alternatives to platinum-based catalysts is essential. Herein, we report graphene-encapsulated NiMo alloys as acid-stable non-noble metal catalyst electrodes. The graphene-encapsulated NiMo cathode showed a highly stable performance in the potential cycling test (10,000 cycles) from 0 to 5.0 A cm−2 and 100 h of durability at a 2.2 V constant cell voltage. A balance between catalytic activity and corrosion in acidic environments was achieved by tuning the number of N-doped graphene layers. Through their application in a full-cell PEM-type water electrolyzer, we verify that noble metal catalysts can be replaced by non-noble metal catalysts. Such cheap acid-stable non-noble metal electrodes have promising practical applications in PEM-type water electrolysis.  相似文献   

9.
In recent years, a lot of scientific effort has been put into reusing the energy potential of sugarcane vinasse by dark fermentation. However, the findings so far indicate that new pathways need to be followed. In this context, this study assessed the effect of hydraulic retention time (HRT, from 24 to 1 h) on vinasse fermentation (10, 20, and 30 g COD L?1) in three mesophilic expanded granular sludge bed reactors (EGSB). The carbohydrate conversion remained above 60% at all organic loading rates applied. The maximum hydrogen production rate (8.77 L day?1 L?1) was obtained for 720 kg COD m?3 day?1 and associated to the lactate-acetate pathway. The highest productivities of propionic, acetic, and butyric acids were 3.11, 1.68, and 2.45 g L?1 h?1, respectively, at a HRT of 1 h. At this HRT, the degrees of acidification remained between 54% and 76% in all EGSB reactors. This research provides insights for carboxylate production from sugarcane vinasse and suggests applying the EGSB setup in the acidogenic stage of two-stage processes.  相似文献   

10.
The inefficient extracellular electron transfer (EET) is detrimental to power generation and waste degradation in microbial fuel cells (MFCs). Herein, we report a self-supporting anode for MFCs prepared by graphitization of steamed bread slices followed by in-situ polymerization to fabricate polyaniline@N-doped macroporous carbon foam (PANI@NMCF). The natural nitrogen-containing wheat flour was fermented and carbonized to form NMCF with a high specific surface area of 818.1 m2 g?1. After the NMCF surface modified by PANI, the enhanced hydrophilicity and conductivity of the PANI@NMCF anode would facilitate microbial adhesion, biofilm formation, and electron transfer. The surface improvements enhance the EET process for high-performance MFCs, including a short startup time of 21.7 h, high maximum output power density of 1160 ± 17 mW m?2, and decolourisation efficiency of 88.6 ± 1.2% for 36 h. The chemical oxygen demand removal efficiency was about 84.6 ± 1.1% at end of the operating cycles. This work provides a good foundation for our future development of carbon-based electrode materials for energy conversion and storage devices.  相似文献   

11.
Continuous bioelectricity generation was studied in a novel up-flow bio-cathode microbial fuel cell (MFC). The performance of MFC-1, employing commercially available proton exchange membrane (PEM), was evaluated under different organic loading rates (OLRs). Maximum volumetric power density of 10.04 W m−3 was obtained in MFC-1 at the OLR of 0.923 kg COD m−3 d−1. Overall chemical oxygen demand (COD) removal efficiency more than 90% was achieved under all the OLRs. The performance of MFC-1 was compared with MFC-2, in which the inner anode chamber was made up of earthen cylinder, without employing polymer membrane. MFC-2 generated maximum volumetric power density of 14.59 W m−3 at OLR of 0.923 kg COD m−3 d−1, which was 46% higher than that produced in MFC-1. The internal resistance of MFC-1 (96 Ω) was higher than MFC-2 (69 Ω). The earthen cylinder MFC demonstrated better COD removal and power generation than the MFC employing PEM.  相似文献   

12.
In this paper, the performance of a solar gas turbine (SGT) system integrated to a high temperature electrolyzer (HTE) to generate hybrid electrical power and hydrogen fuel is analyzed. The idea behind this design is to mitigate the losses in the electrical power transmission and use the enthalpy of exhaust gases released from the gas turbine (GT) to make steam for the HTE. In this context, a GT system is coupled with a solar tower including heliostat solar field and central receiver to generate electrical power. To make steam for the HTE, a flameless boiler is integrated to the SGT system applying the SGT extremely high temperature exhaust gases as the oxidizer. The results indicate that by increasing the solar receiver outlet temperature from 800 K to 1300 K, the solar share increases from 22.1% to 42.38% and the overall fuel consumption of the plant reduces from 7 kg/s to 2.7 kg/s. Furthermore, flameless mode is achievable in the boiler while the turbine inlet temperature (TIT) is maintained at the temperatures higher than 1314 K. Using constant amounts of the SGT electrical power, the HTE voltage decreases by enhancing the HTE steam temperature which result in the augmentation of the overall hydrogen production. To increase the HTE steam temperature from 950 K to 1350 K, the rate of fuel consumption in the flameless boiler increases from 0.1 m/s to 0.8 m/s; however, since the HTE hydrogen production increases from 4.24 mol/s to 16 mol/s it can be interpreted that the higher steam temperatures would be affordable. The presented hybrid system in this paper can be employed to perform more thermochemical analyses to achieve insightful understanding of the hybrid electrical power-hydrogen production systems.  相似文献   

13.
Polyaniline is a typical conducting polymer with high migration electron rate, good stability, eco-friendly properties, and high absorption coefficients for visible light. In the present study, polyaniline decorated Pt@TiO2 for visible light-driven H2 generation is reported for the first time. The above-mentioned nanocomposite is prepared through a simple oxidative-polymerization and characterized by infrared spectroscopy, transmission electron microscopy, X–ray diffraction, thermogravimetric analysis, and ultraviolet–visible diffuse reflectance spectra. Polyaniline modification improves the absorption of the nanocomposite in visible light region via a photosensitization effect similar to dye–sensitization but does not influence the crystal structure and size of Pt@TiO2. The polyaniline modified Pt@TiO2 exhibits a remarkable visible light activity (61.8 μmol h−1 g−1) and good stability for H2 generation (with an average apparent quantum yield of 10.1%) with thioglycolic acid as an electron donor. This work provides new insights into using conducting polymers, including polyaniline, as a sensitizer to modify Pt@TiO2 for visible-light hydrogen generation.  相似文献   

14.
It is important to consider the synergy of heterostructures to improve the slow kinetics of water dissociation in the alkaline hydrogen evolution reaction (HER). Herein, we report a simple method to design a heterohierarchical CoMo catalyst. The CoMo catalyst was prepared by simple one-pot electrodeposition on carbon paper (CP). The CoMo/CP catalyst was optimized for the alkaline HER by controlling the electrodeposition bath conditions, potential, and time. The optimized catalyst shows the heterohierarchical structure containing the electrically conductive metallic Co in the bulk and Mo-incorporated Co containing Mo4+ at the surface. It exhibited a lower HER overpotential of 0.11 V at ?20 mA/cm2 compared to those of the others owing to the synergetic effect of the between the Co and Mo incorporated Co. The results highlight the advantages of the simple method developed herein for the design of heterohierarchical catalysts.  相似文献   

15.
Carbon nanostructure materials are becoming of considerable commercial importance, with interest growing rapidly over the decade since the discovery of carbon nanofibers. In this study, a new novel method is introduced to synthesize the carbon nanofibers by gas-phase, where a single-stage microwave-assisted chemical vapour deposition approach is used with ferrocene as a catalyst and acetylene and hydrogen as precursor gases. Hydrogen flow rate plays a significant role in the formation of carbon nanofibers, as being the carrier and reactant gas in the floating catalyst method. The effect of process parameters such as microwave power, radiation time and gas ratio of C2H2/H2 was investigated statistically. The carbon nanofibers were characterized using scanning and transmission electron microscopy and thermogravimetric analysis. The analysis revealed that the optimized conditions for carbon nanofibers production were microwave power (1000 W), radiation time (35 min) and acetylene/hydrogen ratio (0.8). The field emission scanning electron microscope and transmission electron microscope analyses revealed that the vertical alignment of carbon nanofibers has tens of microns long with a uniform diameter ranging from 115 to 131 nm. High purity of 93% and a high yield of 12 g of CNFs were obtained. These outcomes indicate that identifying the optimal values for process parameters is important for synthesizing high quality and high CNF yield.  相似文献   

16.
Ammonia represents one of the most promising potential solutions as energy vector and hydrogen carrier, having a higher potential to transport energy than hydrogen itself in a pressurized form. Furthermore, solid oxide fuel cells (SOFCs) can directly be fed with ammonia, thus allowing for immediate electrical power and heat generation. This paper deals with the analysis of the dynamic behavior of commercial SOFCs when fueled with ammonia. Several measurements at different temperatures have been performed and performances are compared with hydrogen and a stoichiometrically equivalent mixture of H2 and N2 (3:1 M ratio). Higher temperature led to smaller drops in voltage for both fuels, thus providing higher efficiencies. Ammonia resulted slightly more performant (48% at 760 °C) than hydrogen (45% at 760 °C), in short stack tests. Moreover, different ammonia-to-air ratios have been investigated and the stack area-specific resistance has been studied in detail by comparing numerical modeling predictions and experimental values.  相似文献   

17.
Here we show the crucial role of ultramicropores on the adsorbed H2 amount. By synthesizing Fe-BTCs via a perturbation assisted nanofusion synthesis strategy and by the control of textural porosity via Fe:BTC ratio, BET surface area (1312 m2/g), total pore volume (1.41 cm3/g), and H2 adsorption capacity (1.10 wt% at 7.6 bar and 298 K) were enhanced by 1.6, 3.1, and 2.6 times, respectively. The reported BET surface area, and the total pore volume are the highest of those reported for Fe-BTC, to date. The enhanced H2 adsorption capacity of Fe-BTC-3 is attributed to the ultramicropores present in its pore structure. Presence of ultramicropores maximizes van der Waals potential, and the adsorbed H2 amount increases. By the perturbation assisted nanofusion synthesis strategy and the control over textural porosity, an Fe-BTC that possesses a H2 adsorption capacity higher than those of reported MOFs with higher BET surface areas has been reported.  相似文献   

18.
Co-production of hydrogen and methane by two-phase anaerobic digestion (AD) may offer a sustainable solution for the centralized treatment of food waste (FW), while ammonia accumulation is potentially encountered. A mesophilic two-phase AD was investigated for hydrogen and methane production from FW at varying ammonia concentrations. The process achieved a hydrogen yield of 47.7 mL/g VS and a methane yield of 335 mL/g VS by optimizing the organic loading rate (OLR) and recirculation ratio. Total ammonia nitrogen (TAN) concentration of 4044 mg/L corresponded to a threshold in the hydrogen reactor, above which ammonia would initiate inhibition of hydrogenogenesis and acidogenesis. Methane yield was recovered in the methane reactor after acute inhibiting effects of TAN below 5800 mg/L, while TAN above 6200 mg/L caused chronic inhibition of methanogens. Adjusting hydraulic retention time (HRT) and recirculation ratio in hydrogen and methane reactors reduced TAN to 960 and 2105 mg/L respectively, resulting in successful recovery was achieved in the hydrogen reactor but not in the methane reactor. The two-phase AD for methane and hydrogen production can be a promising solution for ammonia accumulation in AD from FW.  相似文献   

19.
Polymeric carbon/activated carbon aerogels were synthesized through sol-gel polycondensation reaction followed by the carbonization at 800 °C under Argon (Ar) atmosphere and subsequent physical activation under CO2 environment at different temperatures with different degrees of burn-off. Significant increase in BET specific surface area (SSA) from 537 to 1775 m2g1 and pore volume from 0.24 to 0.94 cm3g1 was observed after physical activation while the pore size remained constant (around 2 nm). Morphological characterization of the carbon and activated carbons was conducted using X-ray diffraction (XRD) and Raman spectroscopy. Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) were used to investigate the effect of thermal treatment (surface cleaning) on the chemical composition of carbon samples.Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to analyse the capacitive and resistive behaviour of non-activated/activated/and surface cleaned activated carbons employed as electroactive material in a two electrode symmetrical electrochemical capacitor (EC) cell with 6 M KOH solution used as the electrolyte.CV measurements showed improved specific capacitance (SC) of 197 Fg1 for activated carbon as compared to the SC of 136 Fg1 when non-activated carbon was used as electroactive material at a scan rate of 5 mVs−1. Reduction in SC from 197 Fg1 to 163 Fg1 was witnessed after surface cleaning at elevated temperatures due to the reduction of surface oxygen function groups.The result of EIS measurements showed low internal resistance for all carbon samples indicating that the polymeric carbons possess a highly conductive three dimensional crosslinked structure. Because of their preferred properties such as controlled porosity, exceptionally high specific surface area, high conductivity and desirable capacitive behaviour, these materials have shown potential to be adopted as electrode materials in electrochemical capacitors.  相似文献   

20.
The metal organic frameworks (MOFs) supported Pd catalysts for H2 generation from formic acid (FA) were synthesized in this work, via a facile excessive impregnation-low temperature reduction approach. Among the synthetic catalysts, 10% Pd/MOF-Cr (18) displayed a remarkable performance for catalyzing FA dehydrogenation in additive-free aqueous solution, and the corresponding TOFmid achieved 537.8 h?1 at 323 K. Furthermore, the bimetallic Ni–Pd alloy catalysts were prepared by the introduction of Ni in the subsequent work. Fortunately, 10% Ni0.4Pd0.6/MOF-Cr was found to be a highly active and fairly durable catalyst, exhibiting a TOFmid as high as 737.9 h?1 at 323 K with almost 100% XFA (final) and SH2, and remained 94% of its original activity in the third cyclic catalysis. Meanwhile, Ni was discovered to be indispensable in increasing the electron density of Pd, downsizing the immobilized metal particles and inhibiting the agglomeration of the loaded nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号