首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
研究了BFe30 1 1 10CrNi3MoV复合钢板的焊接工艺和热成形工艺 ,结果表明 ,焊接后的复层铜与基层钢熔合良好 ,有效地阻止了钢侧中Fe离子对复层铜焊缝的污染。热循环引起的界面松弛对界面的剪切强度有一定的影响。  相似文献   

2.
在铝合金板温成形数值仿真中,成形极限图是判断材料颈缩失效和评价温冲压成形能力的基础.提出了一种温成形条件下铝合金板成形极限图的理论预测方法.采用曲线拟合方法建立了Al5083-O铝合金板应变硬化指数、应变率硬化指数随成形温度的变化规律;采用M-K理论模型,结合Logan-Hosford屈服函数计算获得温成形条件下铝合金板的成形极限图.计算结果与实验数据吻合较好,证实了温成形条件下铝板成形极限图的理论预测方法是正确的.  相似文献   

3.
研究了浸涂助复剂(铝基合金)和室温轧制工艺对Cu/Mo/Cu复合界面结合强度的影响,简述了Cu/Mo/Cu复合板室温轧制成形工艺过程,详细分析了表面和界面清理、初道次轧制临界变形率及热处理工艺等因素对复合板结合强度的影响.实验结果得出,钼板浸涂Al-Mn-Zn-Sn合金助复剂后的热处理温度为800~850℃;初道次轧制变形率为45%最佳;复合轧制后合适的退火工艺为450℃,保温60 min.  相似文献   

4.
通过对胀形区成形极限图的理论分析和经验修正,建立了胀形区成形极限图的计算公式,经试验验证,在不同钢种、不同退火工艺、不同镀锌方式、不同表面处理方式下,按此公式计算的结果都能很好地符合试验结果.  相似文献   

5.
为了方便获得双金属异形复合管,提出一种采用液压成形直接制备双金属复合三通管的新型工艺方法.研究中应用自行设计的简单成形设备,制备出具有一定高度的铜/铝双金属复合管,探讨了不同工艺条件对成形结果的影响,获得了双金属液压胀形的成形规律,采用扫描电镜等方法对复合界面微观组织进行观察.实验结果及分析表明,该方法避免了现有先复合再胀形的成形工艺的复杂性,有利于节约生产成本,缩短成形周期,制备得到的双金属成形零件结合界面紧密,同时也验证了该技术的可行性.  相似文献   

6.
研究了泡沫铝芯三明治板材U型弯曲工艺,建立了冲压弯曲试验系统,给出了泡沫铝芯三明治板材弯曲变形模式和载荷位移曲线。综合运用试验、塑性力学理论分析了三明治板材冲压弯曲宏微观协调变形机制,以及泡沫铝三明治板材冲压成形板面-泡沫铝芯间界面剥离、圆角半径处过度减薄、泡沫铝芯剪应力裂纹等主要成形缺陷。探讨了压边力和冲压成形板厚的控制规律。  相似文献   

7.
泡沫铝三明治板失效模式的研究   总被引:1,自引:0,他引:1  
对采用包套轧制工艺及胶粘工艺制备的泡沫铝三明治板进行了准静态三点弯曲实验,分析了材料的变形行为及界面结合强度与失效模式间的关系。研究结果表明,包套轧制法制备的三明治板的极限载荷明显高于胶粘三明治板,具有界面冶金结合特征的泡沫铝三明治板的失效特征体现为剪切失效与面板凹陷共同作用。通过叠加原理修正了相关的模式公式,该模型具有较高的精度,可对预测三明治板极限载荷提供理论依据。  相似文献   

8.
樊丁  李永鹏  武利建  黄健康  刘世恩  刘玉龙 《材料导报》2021,35(16):16115-16119
采用超声辅助等离子弧熔钎焊工艺实现了铝/铜异种金属连接,获得了成形良好的铝/铜搭接接头.利用 SEM、EDS、XRD和拉伸试验等测试方法,研究了超声振动对焊缝成形、焊缝晶粒尺寸、接头的界面结构和力学性能的影响.结果发现:不施加超声振动时,接头界面处有大约55 μm厚的金属间化合物层形成,Al-Cu共晶区出现一些树枝晶和粗大的等轴晶,焊接接头的剪切强度为51. 37 MPa.施加超声振动后,铝在铜基体上的浸润铺展面积增加,金属间化合物层的厚度下降到29 μm,Al-Cu共晶区的晶粒尺寸明显减小,焊接接头的剪切强度增加到84. 93 MPa.接头的断裂方式为脆性断裂.  相似文献   

9.
用SEM、TEM、微区XRD等手段分析了复合板界面扩散层的形貌和结构,研究了热处理工艺对冷轧铜铝复合板材界面扩散层结构的影响,讨论界面扩散层形成规律。研究表明,冷轧铜铝复合板经过扩散热处理后,在复合界面形成具有扩散性质的界面层,随着热处理时间的延续,界面扩散层由最初的单层逐渐生长为三层,进一步延长热处理时间,界面层的层数不变,厚度略有增加;界面层含有q(Al2Cu)相、h2(AlCu)相和g2(Al4Cu9)相等金属间化合物;界面扩散层结构为:铝侧的Al-Cu固溶体与q(Al2Cu)相复合层、h2(AlCu)相层和铜侧的Cu-Al固溶体与g2(Al4Cu9)相复合层。  相似文献   

10.
针对铜铝无法复合成形和铜铝结合面不紧密等问题,采用Deform-3D有限元软件,模拟了铜铝复合接触线连续挤压包覆成形过程,研究了成形过程不同模芯端部导流角、复合变形区长度、坯料与模具表面状态和挤压轮转速对铜铝复合接触线包覆质量的影响.研究结果表明:模芯端部导流角度取45°~30°,复合变形区长度L取5 mm,铜铝结合紧密度高,包覆效果好;提高铜线与铝线之间的摩擦,降低模具与铜线之间的摩擦,有利于实现铜铝流动的同步性;适当提高挤压轮转速有利于铜铝结合面紧密度的提高.在TLJ340连续挤压机上进行了铜铝复合试验,试验结果与数值模拟结果相吻合,成功生产出质量合格的铜铝复合接触线产品.  相似文献   

11.
Cracking of a cylindrical shell section from an absorption tower occurred during the hydraulic pressure testing. In order to find out the cause of failure, the cracked cylindrical shell section was inspected and destructively analyzed. Optical microscopy was performed to evaluate the basic microstructure of the material used to fabricate the cylinder and the effect of welding on the microstructure. The fracture surface was examined in a scanning electron microscope, and the effects of the heat treatment temperature on the structure and properties of 410S/16MnR explosively clad plate were investigated. Detailed metallographic studies indicated that bainite existed in the base layer of the explosively welded material. The weld-induced residual stress in the crack origin was investigated by a three-dimensional (3D) finite element model. The numerical result was consistent with the fracture analysis supporting the conclusion that cracking was caused by the poor mechanical properties of the explosively clad plate and that the poor properties were induced by improper heat treatment after explosive welding. The welding residual stresses also contributed to the failure process.  相似文献   

12.
针对船体结构对铝-钢复合板的选材与节点设计需求,对铝-铝-钢与铝-钛-钢复合板开展了轴向拉-压疲劳试验,测试了材料的条件疲劳强度与S-N曲线,对比分析了两种铝-钢复合板的疲劳断裂行为与断裂位置。结果表明,在应力比为-1,轴向拉-压载荷条件下,铝-铝-钢复合板的条件疲劳强度为28.8 MPa,铝-钛-钢复合板的条件疲劳强度为55.0 MPa。在疲劳寿命接近的条件下,后者比前者能够承受更大的应力,抵抗疲劳扩展能力更强。铝-铝-钢复合板疲劳断裂主要发生于1060纯铝层,铝-钛-钢复合板疲劳断裂发生于3003铝合金层,疲劳断裂位置与铝-钢接头组成材料的抗拉强度大小密切相关。  相似文献   

13.
Abstract

The present work aims at studying structure–property correlations in an explosively clad HSLA steel with austenitic stainless steel of AISI 304L grade. The clad plate was subjected to hot rolling followed by a quenching and tempering treatment to achieve better mechanical properties in the base plate. Optical microscopy studies revealed that the interface between the two steels was wavy in the as clad plate and the waviness decreased substantially due to hot rolling. Subsequent heat treatment has not shown any significant effect either. The base plate had tempered martensite/bainite structure in as clad or heat treated conditions and ferrite-pearlite-bainite structure in hot rolled condition. The grains were finer and elongated near the interface. The stainless steel exhibited equiaxed grain structure in as clad, hot rolled or heat treated plates. Tensile properties and charpy impact energy of the base plate were lowered due to hot rolling and then increased substantially due to heat treatment. The microhardness was observed to be a maximum at the bond interface for all three conditions studied. The shear bond strength was the highest in the as clad condition and decreased for the rolled as well as heat treated conditions. Scanning electron microscopy fractography on shear bond specimens revealed the presence of predominantly equiaxed dimples with few regions of rubbed fracture. Quantitative electron probe microanalysis across the bond interface indicated linear change in concentrations of nickel, chromium and manganese between the levels appropriate to the clad layer and base metal.  相似文献   

14.
H13 tool steel powder was clad on copper alloy substrate both directly and using 41C stainless steel (high Ni steel) powder as a buffer layer by direct metal deposition (DMD). Cu-steel bimetallic die casting and injection molding tools are of high interest for reduction of cycle time by efficient heat extraction due to high thermal conductivity of copper. The mechanical properties of these bimetallic structures were investigated in terms of bond strength, impact energy and fracture toughness. The bond interfaces of these claddings showed porous and crack free transition regions. The bond strength was higher in the directly clad H13 tool steel compared to the H13 tool steel clad with 41C stainless steel as buffer layer. The fracture morphology in tensile test specimens showed ductile dimple fracture. Presence of necking just below the interface depicted the softening of substrate in heat affected zone (HAZ) during cladding. The Charpy impact energy is little higher in the 41C stainless steel buffered specimens compared to the directly clad H13 tool steel specimens but the fracture toughness results showed reduction of fracture toughness in the 41C stainless steel buffered specimens due to the low strength in the tensile test. However the fracture toughness value was in the ductile region for both deposits.  相似文献   

15.
提出采用一种铜铝复合管,用来替代传统的空调室外机换热器用铜管,可降低成本27.8%。首先通过数值模拟研究了Φ7管径的铜铝复合管与铜管翅片管换热器空气侧的传热与流动性能,计算结果表明,在入口风速为2.5m/s的情况下,与采用铜管的换热器相比,采用铜铝复合管的换热器空气侧的压力分布几乎不变,换热量降低3.12%,对性能影响较小。另一方面,对采用该模型的铜铝复合管换热器进行了性能测试,实验结果表明:铜铝复合管换热器换热量为8775W,与铜管换热器9101W相比降低3.58%,满足换热器标准要求。实验结果与数值模拟结果基本吻合,均证明这种新型铜铝复合管对换热器性能的影响不大,可用于空调的制造中。  相似文献   

16.
A layer of AerMet100 steel was coated on the surface of forged 300 M steel using laser cladding technique. The chemical compositions, microstructures, hardness and tensile properties of this AerMet100/300 M material were systematically investigated. Results show that the composition of the AerMet100 clad layer is macroscopically homogeneous, and a compositional transition zone with width of 150 μm is observed between the clad layer and heat affected zone. Microstructures in transition zone transform from the fine needle-like bainite in 300 M steel to the lath tempered martensite in AerMet100 clad layer. Microstructures in heat affected zone also gradually change from the thick plate bainite and blocky retained austenite (unstable heat affected zone) to fine needle-like bainite and film-like austenite (stable heat affected zone) due to different thermal cycle processes. Thick plate bainite together with blocky retained austenite in unstable heat affected zone reduce the strength and ductility of AerMet100/300 M material. However, the tensile specimens, consisting of clad layer and stable heat affected zone, show slightly inferior mechanical properties to 300 M steel. Ductile fracture exists in AerMet100 clad layer while quasi-cleavage fracture occurs in the stable heat affected zone.  相似文献   

17.
Ductile materials subjected to plastic deformation experience the different stages of void nucleation, growth and coalescence that eventually lead to ductile fracture. Several models have been proposed to assess the influence of this damage on flow localization and fracture. In general, the plastic behaviour is represented by a constitutive model for porous or damaged materials. It is typical to introduce a material imperfection, with porosity higher than average, which evolves up to localization and fracture. However, the void volume fraction in the imperfection is chosen more or less arbitrarily. In the present work, a model that evaluates this void volume fraction more rigorously is developed. The forming limit diagram (FLD) for a dual phase‐steel is calculated using the damage‐based imperfection calculation and validated with experimental results. The effect of void shape on the imperfection porosity level and limit strains in sheet forming is also assessed with the present method.  相似文献   

18.
Clad sheet metals offer a better combination of different properties than a monolithic sheet does. In the present study, the formability of a cold bonded Cu/Steel clad sheet was investigated in single point incremental forming (SPIF). In order to relieve deformation stresses, the sheet was annealed over a range of temperature and time. It was found that the sheet ductility increases as the annealing temperature increases, and as a result the formability increases. On the other hand, the bond force at the interface of constituent sheets was observed to decrease with the increasing of temperature. Moreover, the annealing time was found to have no significant effect both on the formability and bond force. Therefore, performing annealing for low times can satisfactorily serve the purpose. The most appropriate annealing temperature for maximizing the formability was 700°C, because higher temperature was noticed to cause severe delamination of Cu layer, thus deteriorating the clad sheet. As a promising aspect of the study, there was no delamination of laminates during forming till the maximum achievable angle. The correlations presented herein study can act as guideline for the users. This study is the first report of its nature.  相似文献   

19.
Stainless steel clad plate is widely used in petroleum, chemical and medicine industries due to its good corrosion resistance and high strength. But cracks are often formed in clad layer during the manufacture or service, which are often repaired by repair welding. In order to ensure the structure integrity, the effects of residual stress need to be considered. The objective of this paper is to estimate the residual stress and deformation in the repair weld of a stainless steel clad plate by finite element method. The effects of heat input and welding layer number on residual stresses and deformation have been studied. The results show that large residual stresses have been generated in the repair weld. The heat input and layer number have great effects on residual stress distribution. With the heat input and welding layer number increasing, the residual stresses are decreased. Using multiple-layer welding and higher heat input can be useful to decrease the residual stress, which provides a reference for optimizing the repair welding technology of this stainless steel clad plate.  相似文献   

20.
通过优化爆炸焊接工艺和采用顶柱以及复管加长的方式得到了无缩径和未结合区的爆炸焊接3Cr13Mo/42CrMo复合棒,试验表明,淬火热处理可将复合棒复层硬度提高35%,达到HRC54,同时还能进一步增加复合棒的界面结合强度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号