首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this work was to evaluate long-term effects of different irrigation regimes on mature olive trees growing under field conditions. A 9-year experiment was carried out. Three irrigation treatments were applied: no irrigation, water application considering soil water content (short irrigation), or irrigation without considering soil water reserves and applying a 20% of extra water as a leaching fraction (long irrigation). Leaf water content, leaf area, vegetative growth, yield and fruit characteristics (fruit size, pulp:stone ratio and oil content) were determined yearly. Results showed that growth parameters did not show significant differences as a consequence of applied water. Yield was increased in irrigated trees compared to non-irrigated ones, but little differences between short and long irrigation were observed, only when accumulated yield from 1998 to 2006 was considered. Irrigation did not cause significant differences in fruit size or pulp:stone ratio either. Irrigation regimes similar to those applied in this experiment, under environmental conditions with relatively high mean annual precipitation, does not increase growth, yield or fruit characteristics when compared to rain-fed treatment, and consequently, the installation of a irrigation system could be not financially profitable.  相似文献   

2.
3.
Potato evapotranspiration and yield under different drip irrigation regimes   总被引:1,自引:0,他引:1  
A field experiment comparing different irrigation frequencies and soil matric potential thresholds on potato evapotranspiration (ET), yield (Y) and water-use efficiency (WUE) was carried out in a loam soil. The experiment included five treatments for soil matric potential: F1 (-15 kPa), F2 (-25 kPa), F3 (-35 kPa), F4 (-45 kPa) and F5 (-55 kPa) and six treatments for irrigation frequency: N1 (once every day), N2 (once every 2 days), N3 (once every 3 days), N4 (once every 4 days), N6 (once every 6 days) and N8 (once every 8 days). Results indicate that both soil matric potential and drip irrigation frequency influenced potato ET, Y and WUE. Potato ET increased as irrigation frequency and soil matric potential increased. Comparing soil water potential, the highest ET was 63.4 mm (32.1%) more than the lowest value. Based on irrigation frequency treatments, the highest ET was 36.7 mm (19.2%) more than the lowest value. Potato Y and WUE were also found to increase as irrigation frequency increased. Potato Y increased with an increase in soil water potential then started to decrease. The highest Y and WUE values were achieved with a soil matric potential threshold of -25 kPa and an irrigation frequency of once a day.Communicated by J. Ayars  相似文献   

4.
Tomato rooting patterns, yield and fruit quality were evaluated in a field trial where three irrigation regimes [0.6 (DI), 0.9 (DII) and 1.2 ETc (DIII)] and three drip irrigation depths [surface (R0), subsurface at 20 cm depth (RI) and subsurface at 40 cm depth (RII)] were imposed following a split-plot experimental design, with four replications. The behaviour of the root system in response to the irrigation treatments was evaluated using minirhizotrons installed between two plants, near the plant row. Root-length intensity (L a)—length of the root per unit of minirhizotron surface area (cm cm−2)—was measured at four crop stages. For all sampling dates, none of the factors studied were found to influence L a or rooting depth significantly or the interaction between treatments. For all treatments most of the root system was concentrated in the top 40 cm of the soil profile, where the root-length density ranged from 0.5 cm cm−3 to 1.4 cm cm−3 . The response of tomato fruits to an increase in the water applied was similar in quantitative and qualitative terms for the different drip irrigation depths. Water applied by drip irrigation had the opposite effect on commercial yield (t ha−1) and soluble solids (°Brix) (r=−0.82, P<0.001), however, yield in terms of total soluble solids (t ha−1) was the same for the 0.9 and 1.2 ETc. The increase in commercial yield can be described by the equation   相似文献   

5.
Plant indicators for scheduling irrigation of young olive trees   总被引:2,自引:2,他引:2  
The sensitivity of several water status indicators was determined in irrigated young olive trees subjected to two drought periods at Cordoba, Spain. Trunk diameter fluctuations (TDF) were monitored continuously and stem water potential (N), leaf photosynthesis (Pn) and conductance (gl) were measured periodically on trees where irrigation was interrupted or which were fully irrigated. During the first period of water deprivation in late spring, only some of the TDF-derived parameters were able to detect significant differences caused by water deficits, while there were no differences in stem N, Pn and gl. All water stress indicators responded during the second drought period in midsummer. However, differences in maximum trunk diameter were detected several days before significant stem N differences of about 0.2 MPa were established between treatments. Stem N differences declined further to 0.6 MPa before differences in leaf Pn and gl became significant. Of all TDF-derived indices, trunk growth rate was the most sensitive to water deficits while treatment differences in maximum daily shrinkage were insignificant in the young trees. It is concluded that continuous monitoring of trunk diameter provides the most sensitive indicator for accurate, automated irrigation scheduling of young olive trees under intensive production.  相似文献   

6.
In Marlborough, New Zealand, olives are becoming an important crop alongside grapes. However, despite olives being drought resistant, they are generally planted on the poorer free-draining soils. Also, with the strong increase in cropping area, the demand for irrigation water has increased dramatically. In this research, we investigate the impact of short-term water stress on plant physiological processes, crop yield and oil quality in Marlborough, New Zealand. For that purpose, during the dry summer of 2000–2001, two trees were kept without irrigation for 64 days while two neighbouring trees were irrigated following standard practice. The trees were measured for transpiration (E), leaf and stem water potential (ΨL and ΨS), every other day, from dawn to dusk for three weeks from just before irrigation was started up again. All four trees were wired up for measuring stem sap flow (T) which was recorded hourly and a basic meteorological station provided weather data. Fruit and shoot development was measured weekly. It was found that under the short period of dry conditions with soil moisture (() dropping to <5%, olive trees kept functioning at a very low level with ΨL and ΨS reduced from −1 to <−4.0 MPa (T) reduced from 20 to 5 mm/h and (E) reduced from 1.5 to 1.0 mmol m−2 s−1. Within 10 days of restarting irrigation all these parameters were back to pre-drought levels. Both fruit and shoot growth came to a standstill within a week after drought was induced. During the first few days after re-watering, a high variability in ΨL was found between leaves from the same trees. This variability disappeared after six days. Shoot growth did not recover after re-watering but fruit growth rate, became the same as for continuously irrigated trees within days, but fruit size did not manage to recover before harvest. Yield from the dry trees was low because berry and pit weight were reduced by almost 50% at harvest, had a lower oil and percentage and were lower in phenolics. Stem sap flow was found to give a very good continuous measurement for the hydration status of the olive trees.  相似文献   

7.
The effects of mid-summer regulated deficit irrigation (RDI) treatments were investigated on Navel Lane Late citrus trees over four seasons. Water restrictions applied from July until mid-September were compared with irrigation at full crop evapotranspiration (ETc). Two degrees of water restrictions were imposed: (1) RDI-1, irrigated at around 50% ETc and, (2) RDI-2, irrigated at 30–40% ETc. In addition, threshold values of midday stem water potential (Ψs) of ?1.3 to ?1.5 MPa for RDI-1 and of ?1.5 to ?1.7 MPa for RDI-2 were also taken into account. Results showed that Navel Lane Late is a citrus cultivar sensitive to water deficit since both RDI strategies reduced fruit size every year and water use efficiency in RDI trees was similar to control trees. However, the RDI-1 strategy allowed water savings up to 19% without reduction in yield when the water stress integral did not surpass 70 MPa day. RDI improved fruit quality, increasing total soluble solids and titratable acidity, while the fruit maturity was delayed. In conclusion, we suggest that RDI-1 strategy since it did not significantly impair the economic return can be applied in commercial orchards in case of water scarcity. Nevertheless, Navel Lane Late fruit is sensitive to water deficit and the fruit weight can be detrimentally affected.  相似文献   

8.
Four strategies of deficit irrigation based on a different water-stress ratio (WSR) applied in each phenological stage, and a control treatment were implemented in 11-year-old citrus trees (Citrus sinensis L. Osb. Cv. Navelina) grafted onto carrizo citrange (C. sinensis L. Osb. × Poncirus Trifoliata L. Osb.). The midday stem-water potential and stomatal conductance were measured during the periods considered, and these parameters were used to estimate the plant-water status. Integrated stem-water potential (ΨInt) and integrated stomatal conductance (gInt) were calculated for all treatments and used as a water-stress indicator for the crop. Reference equations were formulated to quantify the relations between water-stress indicators (WSR, ΨInt, gInt) and the crop response, expressed as yield, yield components, and fruit-quality parameters under limited seasonal water availability. Significant differences in yield were found in the second year of experiment between the stressed treatments and control, although these differences were evident during the first year. The main effects were detected in treatments with a water-sever stress applied during the flowering and fruit-growth phases. When this degree of stress was applied during the maturity phase, it was reflected mainly in fruit-quality parameters (total soluble solids, and titrable acidity). These results lead to the conclusion that, in mature orange trees, deficit irrigation affects yield and fruit quality, while enabling water savings of up to 1000 m3 ha−1. Therefore, yield declined on average 10-12% but boosted water productivity 24% with respect to the fully irrigated treatment. Regarding the water-stress indicators used, ΨInt and gInt showed highly significant correlations with the yield and fruit-quality parameters.  相似文献   

9.
Carbon (C) sequestration through irrigation management is a potential strategy to reduce C emissions from agriculture. Two experiments (Exps. I and II) were conducted to investigate the effects of different irrigation strategies on C retention in the soil-plant system in order to evaluate their environmental impacts. Tomato plants (Lycopersicon esculentum L., var. Cedrico) were grown in split-root pots in a climate-controlled glasshouse and were subjected to full irrigation (FI), deficit irrigation (DI) and alternate partial root-zone irrigation (PRI) at early fruiting stage. In Exp. I, each plant received 2.0 g chemical nitrogen (N), while in Exp. II, 1.6 g chemical N and maize residue containing 0.4 g organic N were applied into the pot. The results showed that, in both experiments, the concentration and the amount of total C in the soil were lower in FI and PRI as compared to DI, presumably due to a greater microbial activity in the two treatments; particularly the PRI induced drying and wetting cycles of the soils may cause an increase of microbial activities and respiration rate, which could lead to more C losses from the soil. However, in both experiments the total C concentration in the PRI plants was the highest as compared with the FI and DI plants, and this was seemingly due to improved plant N nutrition under the PRI treatment. Consequently, the total amount of C retained in the soil-plant system was highest in the FI and was similar, but lower, for the PRI and DI. The different N input in the two experiments might have affected the C retention in the soil and in the plant biomass. Nevertheless, with a same degree of water saving, PRI was superior to DI in terms of enhancing C concentration in the plant biomass, which might have contributed to a better fruit quality in tomatoes as reported by [Zegbe et al., 2004] and [Zegbe et al., 2006].  相似文献   

10.
Pomegranate (Punica granatum L.) is a deciduous fruit tree native of central Asia included in the so-called group of minor fruit tree species, not widely grown but of some importance in the south east of Spain. Fruit consumption interest is due to the organoleptic characteristics and to the beneficial effects on health. Pomegranate tree are considered as a culture tolerant to soil water deficit. However, very little is known about pomegranate orchard water management. The objective of this work was to characterize, for the first time in P. granatum, water relations aspects of applied significance for irrigation scheduling. Trees under different irrigation regimes were used and midday stem water potential (Ψstem) and midday leaf gas exchange were periodically measured over the course of an entire season. During spring and autumn, Ψstem did not show significant differences between irrigation treatments while there were considerable differences in leaf photosynthesis and stomatal conductance, suggesting a near-isohydric behaviour of pomegranate trees. This might explain why the signal intensity of Ψstem was lower than those of gas exchange indicators during the experimental period. Thus, leaf photosynthesis rates and stomatal conductance might have a greater potential for irrigation scheduling of pomegranate trees than Ψstem measured at solar noon.  相似文献   

11.
We investigated the long-term effects of different deficit irrigation (DI) options on tree growth, shoot and leaf attributes, yield determinants and water productivity of almond trees (Prunus dulcis, cv. Marta) grown in a semiarid climate in SE Spain. Three partial root-zone drying (PRD) irrigation treatments encompassing a wide range of water restriction (30%, 50% and 70% of full crop requirements, ETc) and a regulated deficit irrigation treatment (RDI, at 50% ETc during kernel-filling) were compared over three consecutive growth seasons (2004–2006) to full irrigation (FI). The results showed that all deficit irrigation treatments have a negative impact on trunk growth parameters. The magnitude of the reduction in trunk growth rate was strongly correlated through a linear relationship with the annual volume of water applied (WA) per tree. Similarly, a significant relationship was found between WA and the increase in crown volume. In contrast, leaf-related attributes and some yield-related parameters (e.g., kernel fraction) were not significantly affected by the irrigation treatments. Except in PRD70, individual kernel weight was significantly reduced in the deficit irrigated treatments. Kernel yield, expressed in percent of the maximum yield observed in the FI treatment, showed a linear decrease with decreasing WA and a slope of 0.43, which implies that a 1% decrease in water application would lead to a reduction of 0.43% in yield. Water productivity increased drastically with the reduction of water application, reaching 123% in the case of PRD30. Overall, our results demonstrate the prevalence of direct and strong links between the intensity of the water restriction under PRD – i.e., the total water supply during the growing season – and the main parameters related to tree growth, yield and water productivity. Noteworthy, the treatments that received similar annual water volumes under contrasted deficit irrigation strategies (i.e., PRD70 and RDI) presented a similar tree performance.  相似文献   

12.
The effects of regulated deficit irrigation (RDI) and crop load on Japanese plum were investigated. RDI applied during phase II of fruit growth and post-harvest was compared with irrigation to match full crop evapotranspiration. Each irrigation treatment was thinned to a commercial crop load (described as medium) and to approximately 40% less than the commercial practice (described as low). The RDI strategy allowed for 30% water savings, increasing tree water use efficiency, with minimal effect on crop yield and fruit growth providing that plant water stress during the fruit growth period was low (stem water potential > −1.5 MPa), trees could recover optimum water status well before harvest, and crop load was low. However, the economic return, calculated from fruit weight distribution by commercial categories, was more affected by RDI than yield. The combination of medium crop load and RDI shifted fruit mass distribution towards the low value categories. This lead to similar or even higher economic returns in the RDI treatment with low crop level than with the medium one. In addition, since both, low crop level and RDI, increased fruit total soluble solids (TSS) concentration, fruit under RDI and low crop levels had the highest values of TSS.  相似文献   

13.
A study was conducted to determine the effects of different drip irrigation regimes on yield and yield components of cucumber (Cucumbis sativus L.) and to determine a threshold value for crop water stress index (CWSI) based on irrigation programming. Four different irrigation treatments as 50 (T-50), 75 (T-75), 100 (T-100) and 125% (T-125) of irrigation water applied/cumulative pan evaporation (IW/CPE) ratio with 3-day-period were studied.Seasonal crop evapotranspiration (ETc) values were 633, 740, 815 and 903 mm in the 1st year and were 679, 777, 875 and 990 mm in the 2nd year for T-50, T-75, T-100 and T-125, respectively. Seasonal irrigation water amounts were 542, 677, 813 and 949 mm in 2002 and 576, 725, 875 and 1025 mm in 2003, respectively. Maximum marketable fruit yield was from T-100 treatment with 76.65 t ha−1 in 2002 and 68.13 t ha−1 in 2003. Fruit yield was reduced significantly, as irrigation rate was decreased. The water use efficiency (WUE) ranged from 7.37 to 9.40 kg m−3 and 6.32 to 7.79 kg m−3 in 2002 and 2003, respectively, while irrigation water use efficiencies (IWUE) were between 7.02 and 9.93 kg m−3 in 2002 and between 6.11 and 8.82 kg m−3 in 2003.When the irrigation rate was decreased, crop transpiration rate decreased as well resulting in increased crop canopy temperatures and CWSI values and resulted in reduced yield. The results indicated that a seasonal mean CWSI value of 0.20 would result in decreased yield. Therefore, a CWSI = 0.20 could be taken as a threshold value to start irrigation for cucumber grown in open field under semi-arid conditions.Results of this study demonstrate that 1.00 IW/CPE water applications by a drip system in a 3-day irrigation frequency would be optimal for growth in semiarid regions.  相似文献   

14.
This study investigated the effect of irrigation amount on the concentration of phenolic compounds in olive (Olea europaea L., cv. Arbequina) oil obtained from an intensively-managed orchard in a semi-arid area with a Mediterranean climate in Tunisia. Different irrigation treatments 50% Etc, 75% Etc and 100% Etc were applied to the olive orchard. Oil quality, evaluated using the parameters established to determine the quality level of virgin olive oils (acidity, K232, K270 and peroxide index) was slightly affected by irrigation. However, results showed that irrigation positively affected both fruit and oil quality. In fact, the least irrigation regime (T1), showed a significantly higher content of oleic acid (70.08%), whereas olive oils from more irrigated trees (T2 and T3) had higher contents of palmitic acid (11.64% and 13.14%, respectively) and lower of linoleic acid (approximately 12.7%). However, content of phenolic compounds (hydrophilic and lypophilic), in the oils extracted, strongly differed. In fact, different irrigation regimes applied not only affected the total amount of phenols which were proportional to irrigation (193.2 and 271.87 mg kg−1 for T1 and T3, respectively) except for T2 but also their HPLC profiles. Contrarily to phenols, insignificant differences were observed in the concentration of α-tocopherol between the irrigation treatments studied.  相似文献   

15.
Maximum daily shrinkage (MDS) is the parameter of daily cycle of trunk diameter most widely suggested in irrigation scheduling for several fruit trees. However, as in other plant-measured approaches, the irrigation decision may be difficult due to the influence of the environment on the values obtained. Reference equations of MDS have been established in order to avoid the effects of environmental conditions. Such equations are usually related to simple meteorological data, in order to easily estimate MDS values in full-irrigated conditions. This paper studies the influence of fruit load and the inter-annual variations on the reference equation of MDS in olive trees. These reference equations were calculated during 4 seasons in a full-irrigated orchard and the equations were validated with the data from a different season. The MDS values were related to vapour pressure deficit (VPD) and temperature taken near the experimental orchard. In addition, meteorological data were considered as mean daily or as midday values; only for temperature was the maximum daily value also used. The validation of the equations was made using the fits with all the meteorological data considered (midday and mean daily of VPD and temperature). In addition, two different fits were used in each meteorological data—one according to fruit load and other with the complete pool of data. The equations fit were significantly different each season in all the meteorological data considered. However, seasons with similar fruit load were more similar to each other. In both meteorological data considered (VPD and temperature) the midday values improved the fit in respect to mean daily values. The equations obtained with maximum daily temperature were similar in accuracy to the one of midday. The reference equations in which temperature was used obtained a better fit that the ones calculated with VPD. No significant differences were found in the validation when equations according to fruit load or the complete pool data were compared. The limitations and usefulness of these reference equations are also discussed.  相似文献   

16.
Fino lemon trees (Citrus limon L. Burm. fil.) on sour orange (Citrus aurantium L.), growing on a low water retention capacity soil, were submitted to three different irrigation treatments over four years: 100% ETc all year (T-0), 25% ETc all year except during the rapid fruit growth period when 100% ETc was applied (T-1) and 100% ETc all year, except during the rapid fruit growth period when 70% ETc was applied (T-2). A water saving of 30 and 20% was achieved in the T-1 and T-2 treatments, respectively. The plant responses to irrigation treatments were similar in all the years studied. Leaf water potential decreased during deficit irrigation periods in T-1 and T-2 treatments. Larger differences were found in values taken at predawn ( pd) than at midday ( md), indicating that pd is a more useful indicator of plant water status. There was neither osmotic nor elastic adjustment in response to deficit irrigation treatment. A clear separation between the main periods of shoot and fruit growth was found, which can be considered an advantageous characteristic in applying regulated deficit irrigation strategies. Onset of the critical period of rapid fruit growth could be determined precisely by considering the decrease in relative fruit growth rate values. T-2 treatment did not induce a significant reduction in total yield, but it caused a delay in reaching marketable lemon fruit size. T-1 treatment did not affect total yield, with a reduction in yield on the first pick occurring in only one year. Chemical characteristics of lemon fruit were not significantly modified by irrigation treatment.  相似文献   

17.
The effects of mid-summer regulated deficit irrigation (RDI) treatments were investigated on Clementina de Nules citrus trees over three seasons. Water restrictions applied from July, once the June physiological fruit drop had finished, until mid September were compared with a Control treatment irrigated during all the season to match full crop evapotranspiration (ETc). Two degrees of water restrictions were imposed based on previous results also obtained in Clementina de Nules trees ( [Ginestar and Castel, 1996] and [González-Altozano and Castel, 1999]). During the RDI period, deficit irrigation was applied based on given reductions over the ETc, but also taking into account threshold values of midday stem water potential (Ψs) of −1.3 to −1.5 MPa for RDI-1 and of −1.5 to −1.7 MPa for RDI-2. Results showed that water savings achieved in the RDI-2 treatment impaired yield by reducing fruit size. On the contrary, the RDI-1 strategy allowed for 20% water savings, with a reduction in tree growth but without any significant reduction in yield, fruit size nor in the economic return when irrigation was resumed to normal dose about three months before harvest. Water use efficiency (WUE) in the RDI trees was similar or even higher than in Control trees. RDI improved fruit quality increasing total soluble solids (TSS) and titratable acidity (TA). In conclusion, we suggest that the RDI-1 strategy here evaluated can be applied in commercial orchards not only in case of water scarcity, but also as a tool to control vegetative growth improving fruit composition and reducing costs associated with the crop management.  相似文献   

18.
Summary Strawberry plants (Fragaria x annanasa D. cv Chandler) were grown in field plots and in drainage lysimeters under controlled soil moisture regimes. Four irrigation treatments were established by watering the plants when soil water potential reached -0.01, -0.03,-0.05 and -0.07 MPa. The maximum yield was attained at -0.01 MPa soil water potential. Differences in yield were caused by both changes in the number of fruits per plant and in the fresh weight per fruit. Yield reductions were associated with reductions in total assimilation rate resulting from the decreased assimilatory surface area in plants irrigated at lower soil water potentials. The crop water production function calculated on a fruit fresh weight basis resulted in a yield response factor (K y) of 1.01.  相似文献   

19.
‘Chok Anan’ mangoes are mainly produced in the northern part of Thailand for the domestic fresh market and small scale processing. It is appreciated for its light to bright yellow color and its sweet taste. Most of the fruit development of on-season mango fruits takes place during the dry season and farmers have to irrigate mango trees to ensure high yields and good quality. Meanwhile, climate changes and expanding land use in horticulture have increased the pressure on water resources. Therefore research aims on the development of crop specific and water-saving irrigation techniques without detrimentally affecting crop productivity.The aim of this study was to assess the response of mango trees to varying amounts of available water. Influence of irrigation, rainfall, fruit set, retention rate and alternate bearing were considered as the fruit yield varies considerably during the growing seasons. Yield response and fruit size distribution were measured and WUE was determined for partial rootzone drying (PRD), regulated deficit irrigation (RDI) and irrigated control trees.One hundred ninety-six mango trees were organized in a randomized block design consisting of four repetitive blocks, subdivided into eight fields. Four irrigation treatments have been evaluated with respect to mango yield and fruit quality: (a) control (CO = 100% of ETc), (b) (RDI = 50% of ETc), (c) (PRD = 50% of ETc, applied to alternating sides of the root system) and (d) no irrigation (NI).Over four years, the average yield in the different irrigation treatments was 83.35 kg/tree (CO), 80.16 kg/tree (RDI), 80.85 kg/tree (PRD) and 66.1 kg/tree (NI). Water use efficiency (WUE) calculated as yield per volume of irrigation water was always significantly higher in the deficit irrigation treatments as compared to the control. It turned out that in normal years the yields of the two deficit irrigation treatments (RDI and PRD) do not differ significantly, while in a dry year yield under PRD is higher than under RDI and in a year with early rainfall, RDI yields more than PRD. In all years PRD irrigated mangoes had a bigger average fruit size and a more favorable fruit size distribution.It was concluded that deficit irrigation strategies can save considerable amounts of water without affecting the yield to a large extend, possibly increasing the average fruit weight, apparently without negative long term effects.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号