首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
《Sedimentology》2018,65(6):1891-1917
Coastal back‐barrier perched lakes are freshwater bodies that are elevated over sea‐level and are not directly subjected to the inflow of seawater. This study provides a detailed reconstruction of the Doniños back‐barrier perched lake that developed at the end of a small river valley in the rocky coast of the north‐west Iberian Peninsula during the Holocene transgression. Its sequence stratigraphy was reconstructed based on a core transect across the system, the analyses of its lithofacies and microfossil assemblages, and a high‐resolution radiocarbon‐based chronology. The Doniños perched lake was formed ca 4·5 ka bp . The setting of the perched lake was favoured by Late Holocene sea‐level stabilization and the formation of a barrier and back‐barrier basin, which was contemporaneous with the high systems tract period. This basin developed over marine and lagoonal sediments deposited between 10·2 ka bp and 8·0 ka bp , during rapidly rising sea‐level characteristic of the transgressive systems track period. At 1·1 ka bp , the barrier was breached and the perched lake was partially emptied, causing the erosion of the back‐barrier basin sediments and a significant sedimentary hiatus. Both enhanced storminess and human intervention were likely to be responsible for this event. After 1 ka bp , the barrier reclosed and the present‐day lake was reformed, with the water level reaching as high as 5 m above mean sea‐level. The depositional evolution of the Doniños system serves as a model of coastal back‐barrier perched lakes in coastal clastic systems that have developed over gently seaward‐dipping rugged substrates at small distances from the shoreline and under conditions of rising sea‐level and high sediment supply. A review of estuaries, back‐barrier lagoons, pocket beaches and back‐barrier perched lakes in the rocky coast of north‐west Spain shows that the elevation of the bedrock is the main factor controlling the origin and evolution of these systems.  相似文献   

2.
We present the results of a study of the Vena del Gesso Basin (Romagna Apennines, Italy) integrating field analyses and analogue modelling. This basin represents one of the best‐preserved top‐thrust basins in the Northern Apennines foreland and is one of the few examples where primary evaporites, related to the Messinian salinity crisis of the Mediterranean, widely crop out. The structural style affecting the Messinian gypsum is examined to get insights into the mechanism responsible for the overall deformation features recognizable in the area. The evaporites are completely detached at the base and widespread back‐thrusts, repeatedly doubling these deposits, strongly contrast with the regional forelandward vergence of structures in the Apennines. On the basis of the comparison between field data and experimental results, the features characterising this area can be described as the result of the deformation linked to the sequential activation of an obliquely propagating passive‐roof duplex. Analogue models evidenced the major role played (1) by syntectonic erosion that promoted the development of passive‐roof duplex style, as well as (2) the role of décollement level pinch‐out that determined an oblique progression of deformation. Finally our data lead to reconsider the palaeoenvironmental reconstruction concerning the onset of the Messinian salinity crisis in the Mediterranean. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
《Sedimentology》2018,65(1):209-234
Dolomites of varied ages exhibit metre‐scale nested patterns of lateral periodic variation in permeability and porosity and, by inference, dolomite abundance as most examples are 100% dolomite. Two‐dimensional reaction–transport modelling simulations of bed‐scale dolomitization were used to assess whether those patterns in dolomite abundance could form during near‐surface replacement dolomitization. Simulations used a 2 m high and 18 m long model domain, a low‐Mg calcite grainstone precursor and an evaporated Mississippian seawater brine (430 parts per thousand salinity) as the dolomitizing fluid. The domain was initially populated with random variations in porosity and/or grain size. Results reveal that spatial patterns in dolomite abundance emerge when there is as little as 1% dolomite formed, with similarities between the modelled patterns and outcrop‐documented patterns. The nested patterns include a near‐random component that constitutes ≤40% of the total variance, short‐range correlation ranging from 1·5 to 3·3 m and a longer‐range periodic trend with a wavelength up to 6·5 m. The emergence of pattern in dolomite abundance is the result of an autogenic self‐organizing phenomenon. It is triggered by variation in initial calcite reactive surface area that occurs due to the random heterogeneities in initial porosity and/or grain sizes. The pattern develops due to a combination of kinetic disequilibrium reactions (dolomite precipitation and calcite dissolution) and positive feedbacks between dolomite growth, calcite dissolution and fluid flow. Flow is around loci of higher dolomite, lower porosity and higher reactive surface areas, but through loci of lower dolomite, higher porosity and lower reactive surface areas. The resulting less porous/more dolomite and more porous/less dolomite structures at the metre‐scale arise from those localized interactions. This self‐organizing mechanism for pattern formation constitutes a new model for geochemical self‐organization during dolomitization and is the only self‐organization model that is proven applicable to the formation of metre‐scale patterns during early, near‐surface dolomitization.  相似文献   

4.
Autochthonous red algal structures known as coralligène de plateau occur in the modern warm‐temperate Mediterranean Sea at water depths from 20 to 120 m, but fossil counterparts are not so well‐known. This study describes, from an uplifted coastal section at Plimiri on the island of Rhodes, a 450 m long by 10 m thick Late Pleistocene red algal reef (Coralligène Facies), interpreted as being a coralligène de plateau, and its associated deposits. The Coralligène Facies, constructed mainly by Lithophyllum and Titanoderma, sits unconformably upon the Plio‐Pleistocene Rhodes Formation and is overlain by a Maerl Facies (2 m), a Mixed Siliciclastic‐Carbonate Facies (0·2 m) and an Aeolian Sand Facies (2·5 m). The three calcareous facies, of Heterozoan character, are correlated with established members in the Lindos Acropolis Formation in the north of the island, while the aeolian facies is assigned to the new Plimiri Aeolianite Formation. The palaeoenvironmental and genetic‐stratigraphic interpretations of these mixed siliciclastic‐carbonate temperate water deposits involved consideration of certain characteristics associated with siliciclastic shelf and tropical carbonate shelf models, such as vertical grain‐size trends and the stratigraphic position of zooxanthellate coral growths. Integration of these results with electron spin resonance dates of bivalve shells indicates that the Coralligène Facies was deposited during Marine Isotope Stage 6 to 5e transgressive event (ca 135 to 120 ka), in water depths of 20 to 50 m, and the overlying Maerl Facies was deposited during regression from Marine Isotope Stage 5e to 5d (ca 120 to 110 ka), at water depths of 25 to 40 m. The capping Aeolian Sand Facies, involving dual terrestrial subunits, is interpreted as having formed during each of the glacial intervals Marine Isotope Stages 4 (71 to 59 ka) and 2 (24 to 12 ka), with soil formation during the subsequent interglacial periods of Marine Isotope Stages 3 and 1, respectively. Accumulation rates of about 0·7 mm year?1 are estimated for the Coralligène Facies and minimum accumulation rates of 0·2 mm year?1 are estimated for the Maerl Facies. The existence of older red algal reefs in the Plimiri region during at least Marine Isotope Stages 7 (245 to 186 ka) and 9 (339 to 303 ka) is inferred from the occurrence of reworked coralligène‐type lithoclasts in the basal part of the section and from the electron spin resonance ages of transported bivalve shells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号