首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
Non-orthogonal multiple access (NOMA) is one of the key 5G technology which can improve spectrum efficiency and increase the number of user connections by utilizing the resources in a non-orthogonal manner. NOMA allows multiple terminals to share the same resource unit at the same time. The receiver usually needs to configure successive interference cancellation (SIC). The receiver eliminates co-channel interference (CCI) between users and it can significantly improve the system throughput. In order to meet the demands of users and improve fairness among them, this paper proposes a new power allocation scheme. The objective is to maximize user fairness by deploying the least fairness in multiplexed users. However, the objective function obtained is non-convex which is converted into convex form by utilizing the optimal Karush-Kuhn-Tucker (KKT) constraints. Simulation results show that the proposed power allocation scheme gives better performance than the existing schemes which indicates the effectiveness of the proposed scheme.  相似文献   

2.
Future wireless networks demand high spectral efficiency, energy efficiency and reliability. Cooperative non-orthogonal multiple access (NOMA) with simultaneous wireless information and power transfer (SWIPT) is considered as one of the novel techniques to meet this demand. In this work, an adaptive power allocation scheme called SWIPT based adaptive power allocation (SWIPT-APA-NOMA) is proposed for a power domain NOMA network. The proposed scheme considers the receiver sensitivity of the end users while calculating the power allocation coefficients in order to prevent wastage of power allocated to user in outage and by offering priority to any one of the users to use maximum harvested power. A detailed analysis on the bit error rate (BER) performance of the proposed scheme is done and closed form expression is obtained. Simulations have been carried out with various parameters that influence the receiver sensitivity and the results show that the network achieves better outage and BER performance using the proposed scheme. It is found that the proposed scheme leads to a ten-fold decrease in transmit power for the same error performance of a fixed power allocation scheme. Further, it offers 96.06% improvement in the capacity for a cumulative noise figure and fading margin of 10 dB.  相似文献   

3.
The demand for mobile uplink traffic has increased significantly in the past few decades with the development of the Internet of Things (IoT) and mobile Internet. This has subsequently imposed challenges on 5G networks to provide high spectral efficiency and low-power massive connectivity. Non-orthogonal multiple access (NOMA) is a viable alternative to the current state-of-the-art orthogonal multiple access (OMA) techniques to address the challenges in 5G systems. In addition, a power control (PC) mechanism to mitigate the effect of interference between users can be accommodated to improve network performance. In this paper, we discuss the basic principles, key features, and strengths/weaknesses of the various power domain NOMA schemes. Moreover, we propose an uplink PC scheme for the users of a power domain NOMA network. The proposed PC method makes use of the evolutionary game theory (EGT) model to adaptively adjust the transmitted power level of the users which helps in mitigating user interference. A successive interference cancellation (SIC) receiver is applied at a base station (BS) in order to separate the users’ signals. By performing simulations, we show that the proposed EGT-based PC scheme achieves higher network efficiency, spectral efficiency, and energy efficiency.  相似文献   

4.
With the emergence of 5G mobile multimedia services, end users’ demand for high-speed, low-latency mobile communication network access is increasing. Among them, the device-to-device (D2D) communication is one of the considerable technology. In D2D communication, the data does not need to be relayed and forwarded by the base station, but under the control of the base station, a direct local link is allowed between two adjacent mobile devices. This flexible communication mode reduces the processing bottlenecks and coverage blind spots of the base station, and can be widely used in dense user communication scenarios such as heterogeneous ultra-dense wireless networks. One of the important factors which affects the quality-of-service (QoS) of D2D communications is co-channel interference. In order to solve this problem of co-channel interference, this paper proposes a graph coloring based algorithm. The main idea is to utilize the weighted priority of spectrum resources and enables multiple D2D users to reuse the single cellular user resource. The proposed algorithm also provides simpler power control. The heterogeneous pattern of interference is determined using different types of interferences and UE and the priority of color is acquired. Simulation results show that the proposed algorithm effectively reduced the co-channel interference, power consumption and improved the system throughput as compared with existing algorithms.  相似文献   

5.
With the rapid development of Internet technology, users have an increasing demand for data. The continuous popularization of traffic-intensive applications such as high-definition video, 3D visualization, and cloud computing has promoted the rapid evolution of the communications industry. In order to cope with the huge traffic demand of today’s users, 5G networks must be fast, flexible, reliable and sustainable. Based on these research backgrounds, the academic community has proposed D2D communication. The main feature of D2D communication is that it enables direct communication between devices, thereby effectively improve resource utilization and reduce the dependence on base stations, so it can effectively improve the throughput of multimedia data. One of the most considerable factor which affects the performance of D2D communication is the co-channel interference which results due to the multiplexing of multiple D2D user using the same channel resource of the cellular user. To solve this problem, this paper proposes a joint algorithm time scheduling and power control. The main idea is to effectively maximize the number of allocated resources in each scheduling period with satisfied quality of service requirements. The constraint problem is decomposed into time scheduling and power control subproblems. The power control subproblem has the characteristics of mixed-integer linear programming of NP-hard. Therefore, we proposed a gradual power control method. The time scheduling subproblem belongs to the NP-hard problem having convex-cordinality, therefore, we proposed a heuristic scheme to optimize resource allocation. Simulation results show that the proposed algorithm effectively improved the resource allocation and overcome the co-channel interference as compared with existing algorithms.  相似文献   

6.
基于5G通信技术的电力物联网正在如火如荼地建设,随之产生的是用电信息采集、输变电状态监测以及精准负荷控制等新型电力物联网业务。为了满足这些业务对5G网络的超低时延和超高可靠性的需求,提出一种面向电力物联网URLLC(ultra reliable low latency communication)业务的智能网络切片管理方法。该方法综合运用5G切片和移动边缘计算(mobile edge computing,MEC)技术,建立电力业务传输和计算的时延、能耗以及可靠性模型,并通过DQN(deep Q network)算法对切片资源进行优化。仿真实验表明,所提出的智能网络切片管理方法的可靠性高于98%,且优于经典的基于坐标块下降方法和资源平均分配方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号