首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The COVID-19 outbreak initiated from the Chinese city of Wuhan and eventually affected almost every nation around the globe. From China, the disease started spreading to the rest of the world. After China, Italy became the next epicentre of the virus and witnessed a very high death toll. Soon nations like the USA became severely hit by SARS-CoV-2 virus. The World Health Organisation, on 11th March 2020, declared COVID-19 a pandemic. To combat the epidemic, the nations from every corner of the world has instituted various policies like physical distancing, isolation of infected population and researching on the potential vaccine of SARS-CoV-2. To identify the impact of various policies implemented by the affected countries on the pandemic spread, a myriad of AI-based models have been presented to analyse and predict the epidemiological trends of COVID-19. In this work, the authors present a detailed study of different artificial intelligence frameworks applied for predictive analysis of COVID-19 patient record. The forecasting models acquire information from records to detect the pandemic spreading and thus enabling an opportunity to take immediate actions to reduce the spread of the virus. This paper addresses the research issues and corresponding solutions associated with the prediction and detection of infectious diseases like COVID-19. It further focuses on the study of vaccinations to cope with the pandemic. Finally, the research challenges in terms of data availability, reliability, the accuracy of the existing prediction models and other open issues are discussed to outline the future course of this study.  相似文献   

2.
Ever since its outbreak in the Wuhan city of China, COVID-19 pandemic has engulfed more than 211 countries in the world, leaving a trail of unprecedented fatalities. Even more debilitating than the infection itself, were the restrictions like lockdowns and quarantine measures taken to contain the spread of Coronavirus. Such enforced alienation affected both the mental and social condition of people significantly. Social interactions and congregations are not only integral part of work life but also form the basis of human evolvement. However, COVID-19 brought all such communication to a grinding halt. Digital interactions have failed to enthuse the fervor that one enjoys in face-to-face meets. The pandemic has shoved the entire planet into an unstable state. The main focus and aim of the proposed study is to assess the impact of the pandemic on different aspects of the society in Saudi Arabia. To achieve this objective, the study analyzes two perspectives: the early approach, and the late approach of COVID-19 and the consequent effects on different aspects of the society. We used a Machine Learning based framework for the prediction of the impact of COVID-19 on the key aspects of society. Findings of this research study indicate that financial resources were the worst affected. Several countries are facing economic upheavals due to the pandemic and COVID-19 has had a considerable impact on the lives as well as the livelihoods of people. Yet the damage is not irretrievable and the world’s societies can emerge out of this setback through concerted efforts in all facets of life.  相似文献   

3.
The World Health Organization declared COVID-19 a pandemic on March 11, 2020 stating that it is a worldwide danger and requires imminent preventive strategies to minimise the loss of lives. COVID-19 has now affected millions across 211 countries in the world and the numbers continue to rise. The information discharged by the WHO till June 15, 2020 reports 8,063,990 cases of COVID-19. As the world thinks about the lethal malady for which there is yet no immunization or a predefined course of drug, the nations are relentlessly working at the most ideal preventive systems to contain the infection. The Kingdom of Saudi Arabia (KSA) is additionally combating with the COVID-19 danger as the cases announced till June 15, 2020 reached the count of 132,048 with 1,011 deaths. According to the report released by the KSA on June 14, 2020, more than 4,000 cases of COVID-19 pandemic had been registered in the country. Tending to the impending requirement for successful preventive instruments to stem the fatalities caused by the disease, our examination expects to assess the severity of COVID-19 pandemic in cities of KSA. In addition, computational model for evaluating the severity of COVID-19 with the perspective of social influence factor is necessary for controlling the disease. Furthermore, a quantitative evaluation of severity associated with specific regions and cities of KSA would be a more effective reference for the healthcare sector in Saudi Arabia. Further, this paper has taken the Fuzzy Analytic Hierarchy Process (AHP) technique for quantitatively assessing the severity of COVID-19 pandemic in cities of KSA. The discoveries and the proposed structure would be a practical, expeditious and exceptionally precise evaluation system for assessing the severity of the pandemic in the cities of KSA. Hence these urban zones clearly emerge as the COVID-19 hotspots. The cities require suggestive measures of health organizations that must be introduced on a war footing basis to counter the pandemic. The analysis tabulated in our study will assist in mapping the rules and building a systematic structure that is immediate need in the cities with high severity levels due to the pandemic.  相似文献   

4.
We propose a mathematical model of the coronavirus disease 2019 (COVID-19) to investigate the transmission and control mechanism of the disease in the community of Nigeria. Using stability theory of differential equations, the qualitative behavior of model is studied. The pandemic indicator represented by basic reproductive number R0 is obtained from the largest eigenvalue of the next-generation matrix. Local as well as global asymptotic stability conditions for the disease-free and pandemic equilibrium are obtained which determines the conditions to stabilize the exponential spread of the disease. Further, we examined this model by using Atangana–Baleanu fractional derivative operator and existence criteria of solution for the operator is established. We consider the data of reported infection cases from April 1, 2020, till April 30, 2020, and parameterized the model. We have used one of the reliable and efficient method known as iterative Laplace transform to obtain numerical simulations. The impacts of various biological parameters on transmission dynamics of COVID-19 is examined. These results are based on different values of the fractional parameter and serve as a control parameter to identify the significant strategies for the control of the disease. In the end, the obtained results are demonstrated graphically to justify our theoretical findings.  相似文献   

5.
The growing number of COVID-19 cases puts pressure on healthcare services and public institutions worldwide. The pandemic has brought much uncertainty to the global economy and the situation in general. Forecasting methods and modeling techniques are important tools for governments to manage critical situations caused by pandemics, which have negative impact on public health. The main purpose of this study is to obtain short-term forecasts of disease epidemiology that could be useful for policymakers and public institutions to make necessary short-term decisions. To evaluate the effectiveness of the proposed attention-based method combining certain data mining algorithms and the classical ARIMA model for short-term forecasts, data on the spread of the COVID-19 virus in Lithuania is used, the forecasts of epidemic dynamics were examined, and the results were presented in the study. Nevertheless, the approach presented might be applied to any country and other pandemic situations. The COVID-19 outbreak started at different times in different countries, hence some countries have a longer history of the disease with more historical data than others. The paper proposes a novel approach to data registration and machine learning-based analysis using data from attention-based countries for forecast validation to predict trends of the spread of COVID-19 and assess risks.  相似文献   

6.
The fast spread of coronavirus disease (COVID-19) caused by SARSCoV-2 has become a pandemic and a serious threat to the world. As of May 30, 2020, this disease had infected more than 6 million people globally, with hundreds of thousands of deaths. Therefore, there is an urgent need to predict confirmed cases so as to analyze the impact of COVID-19 and practice readiness in healthcare systems. This study uses gradient boosting regression (GBR) to build a trained model to predict the daily total confirmed cases of COVID-19. The GBR method can minimize the loss function of the training process and create a single strong learner from weak learners. Experiments are conducted on a dataset of daily confirmed COVID-19 cases from January 22, 2020, to May 30, 2020. The results are evaluated on a set of evaluation performance measures using 10-fold cross-validation to demonstrate the effectiveness of the GBR method. The results reveal that the GBR model achieves 0.00686 root mean square error, the lowest among several comparative models.  相似文献   

7.
COVID-19, being the virus of fear and anxiety, is one of the most recent and emergent of various respiratory disorders. It is similar to the MERS-COV and SARS-COV, the viruses that affected a large population of different countries in the year 2012 and 2002, respectively. Various standard models have been used for COVID-19 epidemic prediction but they suffered from low accuracy due to lesser data availability and a high level of uncertainty. The proposed approach used a machine learning-based time-series Facebook NeuralProphet model for prediction of the number of death as well as confirmed cases and compared it with Poisson Distribution, and Random Forest Model. The analysis upon dataset has been performed considering the time duration from January 1st 2020 to16th July 2021. The model has been developed to obtain the forecast values till September 2021. This study aimed to determine the pandemic prediction of COVID-19 in the second wave of coronavirus in India using the latest Time-Series model to observe and predict the coronavirus pandemic situation across the country. In India, the cases are rapidly increasing day-by-day since mid of Feb 2021. The prediction of death rate using the proposed model has a good ability to forecast the COVID-19 dataset essentially in the second wave. To empower the prediction for future validation, the proposed model works effectively.  相似文献   

8.
《工程(英文)》2021,7(7):914-923
Travel restrictions and physical distancing have been implemented across the world to mitigate the coronavirus disease 2019 (COVID-19) pandemic, but studies are needed to understand their effectiveness across regions and time. Based on the population mobility metrics derived from mobile phone geolocation data across 135 countries or territories during the first wave of the pandemic in 2020, we built a metapopulation epidemiological model to measure the effect of travel and contact restrictions on containing COVID-19 outbreaks across regions. We found that if these interventions had not been deployed, the cumulative number of cases could have shown a 97-fold (interquartile range 79–116) increase, as of May 31, 2020. However, their effectiveness depended upon the timing, duration, and intensity of the interventions, with variations in case severity seen across populations, regions, and seasons. Additionally, before effective vaccines are widely available and herd immunity is achieved, our results emphasize that a certain degree of physical distancing at the relaxation of the intervention stage will likely be needed to avoid rapid resurgences and subsequent lockdowns.  相似文献   

9.
10.
The two main approaches that countries are using to ease the strain on healthcare infrastructure is building temporary hospitals that are specialized in treating COVID-19 patients and promoting preventive measures. As such, the selection of the optimal location for a temporary hospital and the calculation of the prioritization of preventive measures are two of the most critical decisions during the pandemic, especially in densely populated areas where the risk of transmission of the virus is highest. If the location selection process or the prioritization of measures is poor, healthcare workers and patients can be harmed, and unnecessary costs may come into play. In this study, a decision support framework using a fuzzy analytic hierarchy process (FAHP) and a weighted aggregated sum product assessment model are proposed for selecting the location of a temporary hospital, and a FAHP model is proposed for calculating the prioritization of preventive measures against COVID-19. A case study is performed for Ho Chi Minh City using the proposed decision-making framework. The contribution of this work is to propose a multiple criteria decision-making model in a fuzzy environment for ranking potential locations for building temporary hospitals during the COVID-19 pandemic. The results of the study can be used to assist decision-makers, such as government authorities and infectious disease experts, in dealing with the current pandemic as well as other diseases in the future. With the entire world facing the global pandemic of COVID-19, many scientists have applied research achievements in practice to help decision-makers make accurate decisions to prevent the pandemic. As the number of cases increases exponentially, it is crucial that government authorities and infectious disease experts make optimal decisions while considering multiple quantitative and qualitative criteria. As such, the proposed approach can also be applied to support complex decision-making processes in a fuzzy environment in different countries.  相似文献   

11.
The coronavirus disease 2019 (COVID-19) is characterized as a disease caused by a novel coronavirus known as severe acute respiratory coronavirus syndrome 2 (SARS-CoV-2; formerly known as 2019-nCoV). In December 2019, COVID-19 began to appear in a few countries. By the beginning of 2020, it had spread to most countries across the world. This is when education challenges began to arise. The COVID-19 crisis led to the closure of thousands of schools and universities all over the world. Such a situation requires reliance on e-learning and robotics education for students to continue their studies to avoid the mingling between people and students. In relation to this alternative learning solution, the present study was conducted. A systematic literature review on educational robotics (ER) keywords between 2015–2020 was carried out for the purpose to review a total of 2253 articles from the selected sources; Scopus (452), Taylor & Francis (311), Science Direct (427), IEEE Xplore (221), and Web of Science (842). This review procedure was labelled as Taxonomy 1. After filtering Taxonomy 1, it was found that 98 scientific articles formed the so-called Taxonomy II that was categorized into six categories: (i) Robotics concepts, (ii) Device, (iii) Robotic applications, (iv) Manufacturing robots, (v) Robotics analysis, and (vi) Education/taxonomy. For this study, only 35 articles in this specific field were selected, of which were then assigned into three categories: (i) Application, (ii) Platform, and (iii) Educational. The results show that the application category carries 17.4%, platform 20%, and education 22.85%. This study serves as the application platform to help students, academics, and researchers.  相似文献   

12.
Social networking services (SNSs) provide massive data that can be a very influential source of information during pandemic outbreaks. This study shows that social media analysis can be used as a crisis detector (e.g., understanding the sentiment of social media users regarding various pandemic outbreaks). The novel Coronavirus Disease-19 (COVID-19), commonly known as coronavirus, has affected everyone worldwide in 2020. Streaming Twitter data have revealed the status of the COVID-19 outbreak in the most affected regions. This study focuses on identifying COVID-19 patients using tweets without requiring medical records to find the COVID-19 pandemic in Twitter messages (tweets). For this purpose, we propose herein an intelligent model using traditional machine learning-based approaches, such as support vector machine (SVM), logistic regression (LR), naïve Bayes (NB), random forest (RF), and decision tree (DT) with the help of the term frequency inverse document frequency (TF-IDF) to detect the COVID-19 pandemic in Twitter messages. The proposed intelligent traditional machine learning-based model classifies Twitter messages into four categories, namely, confirmed deaths, recovered, and suspected. For the experimental analysis, the tweet data on the COVID-19 pandemic are analyzed to evaluate the results of traditional machine learning approaches. A benchmark dataset for COVID-19 on Twitter messages is developed and can be used for future research studies. The experiments show that the results of the proposed approach are promising in detecting the COVID-19 pandemic in Twitter messages with overall accuracy, precision, recall, and F1 score between 70% and 80% and the confusion matrix for machine learning approaches (i.e., SVM, NB, LR, RF, and DT) with the TF-IDF feature extraction technique.  相似文献   

13.
Aviv-Reuven  Shir  Rosenfeld  Ariel 《Scientometrics》2021,126(8):6761-6784
Scientometrics - In recent months the COVID-19 (also known as SARS-CoV-2 and Coronavirus) pandemic has spread throughout the world. In parallel, extensive scholarly research regarding various...  相似文献   

14.
Since the end of 2019, the world has suffered from a pandemic of the disease called COVID-19. WHO reports show approximately 113 M confirmed cases of infection and 2.5 M deaths. All nations are affected by this nightmare that continues to spread. Widespread fear of this pandemic arose not only from the speed of its transmission: a rapidly changing “normal life” became a fear for everyone. Studies have mainly focused on the spread of the virus, which showed a relative decrease in high temperature, low humidity, and other environmental conditions. Therefore, this study targets the effect of weather in considering the spread of the novel coronavirus SARS-CoV-2 for some confirmed cases in Iraq. The eigenspace decomposition technique was used to analyze the effect of weather conditions on the spread of the disease. Our theoretical findings showed that the average number of confirmed COVID-19 cases has cyclic trends related to temperature, humidity, wind speed, and pressure. We supposed that the dynamic spread of COVID-19 exists at a temperature of 130 F. The minimum transmission is at 120 F, while steady behavior occurs at 160 F. On the other hand, during the spread of COVID-19, an increase in the rate of infection was seen at 125% humidity, where the minimum spread was achieved at 200%. Furthermore, wind speed showed the most significant effect on the spread of the virus. The spread decreases with a wind speed of 45 KPH, while an increase in the infectious spread appears at 50 KPH.  相似文献   

15.
Starting from late 2019, the new coronavirus disease (COVID-19) has become a global crisis. With the development of online social media, people prefer to express their opinions and discuss the latest news online. We have witnessed the positive influence of online social media, which helped citizens and governments track the development of this pandemic in time. It is necessary to apply artificial intelligence (AI) techniques to online social media and automatically discover and track public opinions posted online. In this paper, we take Sina Weibo, the most widely used online social media in China, for analysis and experiments. We collect multi-modal microblogs about COVID-19 from 2020/1/1 to 2020/3/31 with a web crawler, including texts and images posted by users. In order to effectively discover what is being discussed about COVID-19 without human labeling, we propose a unified multi-modal framework, including an unsupervised short-text topic model to discover and track bursty topics, and a selfsupervised model to learn image features so that we can retrieve related images about COVID-19. Experimental results have shown the effectiveness and superiority of the proposed models, and also have shown the considerable application prospects for analyzing and tracking public opinions about COVID-19.  相似文献   

16.
《工程(英文)》2020,6(10):1115-1121
Masks have become one of the most indispensable pieces of personal protective equipment and are important strategic products during the coronavirus disease 2019 (COVID-19) pandemic. Due to the huge mask demand–supply gap all over the world, the development of user-friendly technologies and methods is urgently needed to effectively extend the service time of masks. In this article, we report a very simple approach for the decontamination of masks for multiple reuse during the COVID-19 pandemic. Used masks were soaked in hot water at a temperature greater than 56 °C for 30 min, based on a recommended method to kill COVID-19 virus by the National Health Commission of the People’s Republic of China. The masks were then dried using an ordinary household hair dryer to recharge the masks with electrostatic charge to recover their filtration function (the so-called “hot water decontamination + charge regeneration” method). Three kinds of typical masks (disposable medical masks, surgical masks, and KN95-grade masks) were treated and tested. The filtration efficiencies of the regenerated masks were almost maintained and met the requirements of the respective standards. These findings should have important implications for the reuse of polypropylene masks during the COVID-19 pandemic. The performance evolution of masks during human wear was further studied, and a company (Zhejiang Runtu Co., Ltd.) applied this method to enable their workers to extend the use of masks. Mask use at the company was reduced from one mask per day per person to one mask every three days per person, and 122 500 masks were saved during the period from 20 February to 30 March 2020. Furthermore, a new method for detection of faulty masks based on the penetrant inspection of fluorescent nanoparticles was established, which may provide scientific guidance and technical methods for the future development of reusable masks, structural optimization, and the formulation of comprehensive performance evaluation standards.  相似文献   

17.
The ongoing coronavirus disease 2019 (COVID-19) pandemic has wreaked havoc worldwide with millions of lives claimed, human travel restricted and economic development halted. Leveraging city-level mobility and case data, our analysis shows that the spatial dissemination of COVID-19 can be well explained by a local diffusion process in the mobility network rather than a global diffusion process, indicating the effectiveness of the implemented disease prevention and control measures. Based on the constructed case prediction model, it is estimated that there could be distinct social consequences if the COVID-19 outbreak happened in different areas. During the epidemic control period, human mobility experienced substantial reductions and the mobility network underwent remarkable local and global structural changes toward containing the spread of COVID-19. Our work has important implications for the mitigation of disease and the evaluation of the socio-economic consequences of COVID-19 on society.  相似文献   

18.
2020年新型冠状病毒肺炎疫情期间,诸多社会公益组织发挥了重要的作用,其中很多志愿者致力于线上各类信息的收集共享,以社会创新的形式为大众提供公益服务。开源社区(开放源代码社区)文化是信息时代的独特产物,它的核心价值要素包括共同承担社会责任、奉献和共享的社区精神,以及协同创新,因此在应对新型冠状病毒肺炎疫情这样的公共卫生危机时,开源社区能够发挥其独特的潜能和影响力。本文以“武汉2020”开源社区为例,基于杨氏基金会社会创新理论框架,研究分析了该社区在线上自组织的演化过程、弱中心化的分布式协作模式和工具等。该社区是由近四千名志愿者自发组织形成的线上公益开源社区,以跨地域协同创新的形式在短期内完成了一款公益服务产品的设计、开发和运行。这次实践拓展了社会创新的边界,展示了广大社区成员基于共同的价值标准和目标凝聚起来后,如何通过自组织搭建一个分布式决策和协作的社区框架,进行协同创新和快速产出面向大众的公益服务。  相似文献   

19.
Zhang  Lin  Zhao  Wenjing  Sun  Beibei  Huang  Ying  Glänzel  Wolfgang 《Scientometrics》2020,124(1):747-773

As of the middle of April 2020, the unprecedented COVID-19 pandemic has claimed more than 137,000 lives (https://coronavirus.jhu.edu/map.html). Because of its extremely fast spreading, the attention of the global scientific community is now focusing on slowing down, containing and finally stopping the spread of this disease. This requires the concerted action of researchers and practitioners of many related fields, raising, as always in such situations the question, of what kind of research has to be conducted, what are the priorities, how has research to be coordinated and who needs to be involved. In other words, what are the characteristics of the response of the global research community on the challenge? In the present paper, we attempt to characterise, quantify and measure the response of academia to international public health emergencies in a comparative bibliometric study of multiple outbreaks. In addition, we provide a preliminary review of the global research effort regarding the defeat of the COVID-19 pandemic. From our analysis of six infectious disease outbreaks since 2000, including COVID-19, we find that academia always responded quickly to public health emergencies with a sharp increase in the number of publications immediately following the declaration of an outbreak by the WHO. In general, countries/regions place emphasis on epidemics in their own region, but Europe and North America are also concerned with outbreaks in other, developed and less developed areas through conducting intensive collaborative research with the core countries/regions of the outbreak, such as in the case of Ebola in Africa. Researches in the fields of virology, infectious diseases and immunology are the most active, and we identified two characteristic patterns in global science distinguishing research in Europe and America that is more focused on public health from that conducted in China and Japan with more emphasis on biomedical research and clinical pharmacy, respectively. Universities contribute slightly less than half to the global research output, and the vast majority of research funding originates from the public sector. Our findings on how academia responds to emergencies could be beneficial to decision-makers in research and health policy in creating and adjusting anti-epidemic/-pandemic strategies.

  相似文献   

20.
COVID-19 was first reported in China and quickly spread throughout the world. Weak investor confidence in government efforts to control the pandemic seriously affected global financial markets. This study investigated chaos in China’s futures market during COVID-19, focusing on the degree of chaos at different periods during the pandemic. We constructed a phase diagram to observe the attractor trajectory of index futures (IFs). During the COVID-19 outbreak, overall chaos in China’s futures market was increasing, and there was a clear correlation between market volatility and the macroenvironment (mainly government regulation). The Hurst index, calculated by rescaled range (R/S) analysis, was 0.46. The price and return of IFs showed long-term correlation and fractal characteristics; the relevant dimensions of the futures market were 2.17. Overall, under the influence of an emergency (COVID-19), chaos in China’s financial market intensified, creating a need for timely government intervention and macrocontrol of the market. This study’s findings can help improve the government’s understanding of the phenomenon of financial chaos caused by emergencies. This study also provides theoretical guidance for controlling financial chaos and maintaining healthy economic development when faced with similar events in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号