首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A high-speed and high-sensitivity vertical indium-tin-oxide-InAlAs-InGaAs Schottky barrier photodetector has been designed, fabricated, and characterized. The devices had dark current densities as low as 8.87/spl times/10/sup -5/ A/cm/sup -2/ at an applied bias of 5 V. The responsivity for all the devices tested ranged from 0.55-0.60 A/W at a wavelength of 1.31 /spl mu/m, and 0.563-0.583 A/W at 1.55 /spl mu/m. The 15-/spl mu/m diameter devices exhibited a -3 dB bandwidth of 19 and 25 GHz at a wavelength of 1.55 /spl mu/m and an applied bias of 5 and 10 V, respectively. These are the best values of responsivity and bandwidth for a vertical InGaAs-based Schottky-barrier photodetector reported to date.  相似文献   

2.
The authors demonstrate high-performing n-channel transistors with a HfO/sub 2//TaN gate stack and a low thermal-budget process using solid-phase epitaxial regrowth of the source and drain junctions. The thinnest devices have an equivalent oxide thickness (EOT) of 8 /spl Aring/, a leakage current of 1.5 A/cm/sup 2/ at V/sub G/=1 V, a peak mobility of 190 cm/sup 2//V/spl middot/s, and a drive-current of 815 /spl mu/A//spl mu/m at an off-state current of 0.1 /spl mu/A//spl mu/m for V/sub DD/=1.2 V. Identical gate stacks processed with a 1000-/spl deg/C spike anneal have a higher peak mobility at 275 cm/sup 2//V/spl middot/s, but a 5-/spl Aring/ higher EOT and a reduced drive current at 610 /spl mu/A//spl mu/m. The observed performance improvement for the low thermal-budget devices is shown to be mostly related to the lower EOT. The time-to-breakdown measurements indicate a maximum operating voltage of 1.6 V (1.2 V at 125 /spl deg/C) for a ten-year lifetime, whereas positive-bias temperature-instability measurements indicate a sufficient lifetime for operating voltages below 0.75 V.  相似文献   

3.
A large-area InGaAs metal-semiconductor-metal (MSM) photodetector with 1/spl times/1 mm/sup 2/ photoactive area for free-space optical communication applications has been designed, fabricated, and characterized. Interdigitated electrodes of 2-/spl mu/m widths and 15-/spl mu/m spacings are designed to maximize the responsivity, and enable MSM photodetectors to reach a maximum responsivity at 1.53-/spl mu/m wavelength. By employing a two-step InP/InGaAsP transition layer, the dark current density of 45 fA//spl mu/m/sup 2/ was achieved at 10-V bias and at room temperature. Dark current-bias voltage curves were measured as a function of temperature from 40 to 270 K to estimate the activation energy. A 3-dB bandwidth of 210 MHz was obtained at a 10-V bias, and the measured result was compared with the designed bandwidth.  相似文献   

4.
High-performance nickel-induced laterally crystallized (NILC) p-channel poly-Si thin-film transistors (TFTs) have been fabricated without hydrogenation. Two different thickness of Ni seed layers are selected to make high-performance p-type TFTs. A very thin seed layer (e.g., 5 /spl Aring/) leads to marginally better performance in terms of transconductance (Gm) and threshold voltage (V/sub th/) than the case of a 60 /spl Aring/ Ni seed layer. However, the p-type poly-Si TFTs crystallized by the very thin Ni seeding result in more variation in both V/sub th/ and G/sub m/ from transistor to transistor. It is believed that differences in the number of laterally grown polycrystalline grains along the channel cause the variation seen between 5 /spl Aring/ NILC TFTs compared to 60-/spl Aring/ NILC TFTs. The 60 /spl Aring/ NILC nonhydrogenated TFTs show consistent high performance, i.e., typical electrical characteristics have a linear field-effect hole mobility of 156 cm/sup 2//V-S, subthreshold swing of 0.16 V/dec, V/sub th/ of -2.2 V, on-off ratio of >10/sup 8/, and off-current of <1/spl times/10/sup -14/ A//spl mu/m when V/sub d/ equals -0.1 V.  相似文献   

5.
We report on the demonstration of continuous-wave (CW) operation of GaInAs-AlGaAsSb quantum cascade (QC) lasers. By placing a 2.5-/spl mu/m-thick gold layer on both sides of the laser ridge to extract heat from the active region in the lateral direction, together with mounting the device epilayer down, we have achieved CW operation of GaInAs-AlGaAsSb QC lasers composed of 25 stages of active/injection regions. The maximum CW operating temperature of the lasers is 94 K, and the emission wavelength is around /spl lambda//spl sim/4.65 /spl mu/m. For a device with the size of 10/spl times/2000 /spl mu/m/sup 2/, the CW optical output power per facet is 13 mW at 42 K and 4 mW at 94 K. The CW threshold current density is 1.99 kA/cm/sup 2/ at 42 K, and 2.08 kA/cm/sup 2/ at 94 K, respectively.  相似文献   

6.
An InGaAs-InAlAs multiple-quantum-well (MQW) electroabsorption (EA) waveguide modulator fabricated on a GaAs substrate has been designed and characterized at 1.3-/spl mu/m wavelength for microwave signal transmission on an analog fibre-optic link. The modulator structure with a lattice constant 2.5% larger than that of GaAs is grown upon a 0.7-/spl mu/m-thick three-stage compositionally step-graded In/sub z/Al/sub 1-z/As relaxed buffer. The waveguide modulator exhibits a high-electrooptic slope efficiency of 0.56 V/sup -1/, a 3-dB electrical bandwidth of 20 GHz, and a large optical saturation intensity in excess of 17 mW. These high-speed optoelectronic modulators could potentially be integrated with on-chip GaAs electronic driver circuits.  相似文献   

7.
We realized a triple-stacked 1.3-/spl mu/m InAs quantum dot (QD) with a high density of 2.4/spl times/10/sup 11/ cm/sup -2/ and a high uniformity of below 24 meV that employs an As/sub 2/ source and a gradient composition (GC) strain-reducing layer (SRL) grown on a GaAs substrate. We demonstrated the 1.3-/spl mu/m wavelength emission of this triple-stacked QD laser with a 0.92-mm cavity length and a cleaved facet at room temperature. In addition, we realized the highest maximum modal gain yet reported of 8.1 cm/sup -1/ per QD layer at beyond 1.28 /spl mu/m by using our high-density and high-uniformity QD.  相似文献   

8.
An InAs/AlGaAs quantum-dot infrared photodetector based on bound-to-bound intraband transitions in undoped InAs quantum dots is reported. AlGaAs blocking layers were employed to achieve low dark current. The photoresponse peaked at 6.2 /spl mu/m. At 77 K and -0.7 V bias, the responsivity was 14 mA/W and the detectivity, D*, was 10/sup 10/ cm/spl middot/Hz/sup 1/2//W.  相似文献   

9.
According to our scaling study, a deeper n-well allows for a lower n-well surface concentration with improved short-channel effects in submicrometer-channel PMOS-FET's. The deep n-well, however, requires a large space between n- and p-channel devices. This large space limits the integration density in scaled bulk CMOS VLSI's. The deep-trench isolation combined with an epitaxial layer resolves this drawback with significantly improved device-to-device isolation and latchup susceptibility. The 6-/spl mu/m-deep with 2-/spl mu/m-wide deep trench is etched in the epitaxial layer and is refilled with 1500 /spl Aring/ of thermal silicon-dioxide film and 2/spl mu/m of polysilicon film. The sheet resistances of N/sup +/ and P/sup +/ diffusion and N/sup +/ -doped polysilicon layers were reduced to 3 to 4 /spl Omega//spl square/ by using the self-aligned TiSi/sub 2/ layer with an oxide sidewall spacer. As a result of this low sheet resistance, the saturation drain current of submicrometer n- and p-channel MOSFET's was improved approximately 33 to 37 percent compared with conventional MOSFET's without the self-aligned TiSi/sub 2/ layer. The 0.5-/spl mu/m-channel CMOS devices using the deep-trench isolation with an epitaxial layer and the self-aligned TiSi/sub 2/ layer operated at a propagation delay time of 140 ps with a power dissipation of 1.1 mW per inverter and attained a maximum clock frequency of 400 MHz in a static /spl divide/ 4 counter without suffering from Iatchup even at the Iatchup trigger current of 200 mA.  相似文献   

10.
10-kV, 123-m/spl Omega//spl middot/cm/sup 2/ power DMOSFETs in 4H-SiC are demonstrated. A 42% reduction in R/sub on,sp/, compared to a previously reported value, was achieved by using an 8 /spl times/ 10/sup 14/ cm/sup -3/ doped, 85-/spl mu/m-thick drift epilayer. An effective channel mobility of 22 cm/sup 2//Vs was measured from a test MOSFET. A specific on-resistance of 123 m/spl Omega//spl middot/cm/sup 2/ were measured with a gate bias of 18 V, which corresponds to an E/sub ox/ of 3 MV/cm. A leakage current of 197 /spl mu/A was measured at a drain bias of 10 kV from a 4H-SiC DMOSFET with an active area of 4.24 /spl times/ 10/sup -3/ cm/sup 2/. A switching time of 100 ns was measured in 4.6-kV, 1.3-A switching measurements. This shows that the 4H-SiC power DMOSFETS are ideal for high-voltage, high-speed switching applications.  相似文献   

11.
Low-frequency noise measurements were performed on p- and n-channel MOSFETs with HfO/sub 2/, HfAlO/sub x/ and HfO/sub 2//Al/sub 2/O/sub 3/ as the gate dielectric materials. The gate length varied from 0.135 to 0.36 /spl mu/m with 10.02 /spl mu/m gate width. The equivalent oxide thicknesses were: HfO/sub 2/ 23 /spl Aring/, HfAlO/sub x/ 28.5 /spl Aring/ and HfO/sub 2//Al/sub 2/O/sub 3/ 33 /spl Aring/. In addition to the core structures with only about 10 /spl Aring/ of oxide between the high-/spl kappa/ dielectric and silicon substrate, there were "double-gate oxide" structures where an interfacial oxide layer of 40 /spl Aring/ was grown between the high-/spl kappa/ dielectric and Si. DC analysis showed low gate leakage currents in the order of 10/sup -12/A(2-5/spl times/10/sup -5/ A/cm/sup 2/) for the devices and, in general, yielded higher threshold voltages and lower mobility values when compared to the corresponding SiO/sub 2/ devices. The unified number-mobility fluctuation model was used to account for the observed 1/f noise and to extract the oxide trap density, which ranged from 1.8/spl times/10/sup 17/ cm/sup -3/eV/sup -1/ to 1.3/spl times/10/sup 19/ cm/sup -3/eV/sup -1/, somewhat higher compared to conventional SiO/sub 2/ MOSFETs with the similar device dimensions. There was no evidence of single electron switching events or random telegraph signals. The aim of this paper is to present a general discussion on low-frequency noise characteristics of the three different high-/spl kappa//gate stacks, relative comparison among them and to the Si--SiO/sub 2/ system.  相似文献   

12.
Visible emitting all-AlGaAs vertical-cavity surface-emitting lasers (VCSELs) have been produced by metal organic vapor phase epitaxy (MOVPE) using ultra-high purity source reagents. Lasing was obtained at wavelengths in the range 683-713 nm using four 45 /spl Aring/ Al/sub 0.18/Ga/sub 0.82/As quantum wells in the active region. At room temperature, a minimum threshold current density of 3.8 kA.cm/sup -2/ was measured for a wavelength of 692 nm; this is the lowest value for an all-AlGaAs vertical-cavity laser operating at this wavelength. Growth of the epitaxial mirrors at 5.2 /spl mu/m/h/sup -1/ results in a total growth time of only two and a half hours.  相似文献   

13.
An on-chip test circuit has been developed to directly measure substrate and line-to-line coupling noise. This test circuit has been manufactured in a 0.35 /spl mu/m double-well double polysilicon CMOS process and consists of noise generators and switched-capacitor signal processing circuitry. On-chip analog-to-digital conversion and calibration are used to eliminate off-chip noise and to extend the measurement accuracy by removing system noise. A scan circuit is described that enables the noise waveform to be reconstructed. On-chip generators ranging in area from 0.25 /spl mu/m/sup 2/ to 1.5 /spl mu/m/sup 2/ produce noise at the receiver decreasing from 3.14 mV//spl mu/m to 0.73 mV//spl mu/m. Open and closed guard rings reduce the noise by 20% and 85%, respectively. Measurement of test circuits manufactured with an epitaxial process-5.5-/spl mu/m-thick epitaxy with 20 /spl Omega//spl middot/cm resistivity on top of a 120 /spl mu/m bulk with 0.03 /spl Omega//spl middot/cm-exhibits a frequency limit of 50MHz below which coupling is insensitive to substrate noise. The difference between experimental results and an analytic model of the line-to-line coupling capacitance ranges from 8.5% to 17.7% for different metal layers.  相似文献   

14.
Optimized second-harmonic generation (SHG) in quantum cascade (QC) lasers with specially designed active regions is reported. Nonlinear optical cascades of resonantly coupled intersubband transitions with giant second-order nonlinearities were integrated with each QC-laser active region. QC lasers with three-coupled quantum-well (QW) active regions showed up to 2 /spl mu/W of SHG light at 3.75 /spl mu/m wavelength at a fundamental peak power and wavelength of 1 W and 7.5 /spl mu/m, respectively. These lasers resulted in an external linear-to-nonlinear conversion efficiency of up to 1 /spl mu/W/W/sup 2/. An improved 2-QW active region design at fundamental and SHG wavelengths of 9.1 and 4.55 /spl mu/m, respectively, resulted in a 100-fold improved external linear-to-nonlinear power conversion efficiency, i.e. up to 100 /spl mu/W/W/sup 2/. Full theoretical treatment of nonlinear light generation in QC lasers is given, and excellent agreement with the experimental results is obtained. For the best structure, a second-order nonlinear susceptibility of 4.7/spl times/10/sup -5/ esu (2/spl times/10/sup 4/pm/V) is calculated, about two orders of magnitude above conventional nonlinear optical materials and bulk III-V semiconductors.  相似文献   

15.
Nitride-based p-i-n bandpass photodetectors   总被引:1,自引:0,他引:1  
Nitride-based p-i-n bandpass photodetectors with semitransparent Ni-Au electrodes were successfully fabricated and characterized. The photodetectors exhibit a 20-V breakdown voltage and a small dark current of 40 pA at 4-V reverse bias. It was found that spectral responsivity shows a narrow bandpass characteristics from 337 to 365 nm. Moreover, the peak responsivity was estimated to be 0.13 A/W at 354 nm, corresponding to a quantum efficiency of 44%. The relatively high response at shorter wavelength is due to the unoptimized thickness of p-Al/sub 0.1/Ga/sub 0.9/N absorption layer. At low frequency, the noise of the photodetector is dominant by the 1/f-type noise. For our 330/spl times/330 /spl mu/m/sup 2/ device, given a bias of -3.18 V, the corresponding noise equivalent power and normalized detectivity D/sup */ are calculated to be 5.6/spl times/10/sup -12/ W and 3.34/spl times/10/sup 11/ cmHz/sup 0.5/ W/sup -1/, respectively.  相似文献   

16.
Buried-channel (BC) high-/spl kappa//metal gate pMOSFETs were fabricated on Ge/sub 1-x/C/sub x/ layers for the first time. Ge/sub 1-x/C/sub x/ was grown directly on Si (100) by ultrahigh-vacuum chemical vapor deposition using methylgermane (CH/sub 3/GeH/sub 3/) and germane (GeH/sub 4/) precursors at 450/spl deg/C and 5 mtorr. High-quality films were achieved with a very low root-mean-square roughness of 3 /spl Aring/ measured by atomic force microscopy. The carbon (C) content in the Ge/sub 1-x/C/sub x/ layer was approximately 1 at.% as measured by secondary ion mass spectrometry. Ge/sub 1-x/C/sub x/ BC pMOSFETs with an effective oxide thickness of 1.9 nm and a gate length of 10 /spl mu/m exhibited high saturation drain current of 10.8 /spl mu/A//spl mu/m for a gate voltage overdrive of -1.0 V. Compared to Si control devices, the BC pMOSFETs showed 2/spl times/ enhancement in the saturation drain current and 1.6/spl times/ enhancement in the transconductance. The I/sub on//I/sub off/ ratio was greater than 5/spl times/10/sup 4/. The improved drain current represented an effective hole mobility enhancement of 1.5/spl times/ over the universal mobility curve for Si.  相似文献   

17.
We present the first room-temperature continuous-wave operation of high-performance 1.06-/spl mu/m selectively oxidized vertical-cavity surface-emitting lasers (VCSEL's). The lasers contain strain-compensated InGaAs-GaAsP quantum wells (QW's) in the active region grown by metalorganic vapor phase epitaxy. The threshold current is 190 /spl mu/A for a 2.5/spl times/2.5 /spl mu/m/sup 2/ device, and the threshold voltage is as low as 1.255 V for a 6/spl times/6 /spl mu/m/sup 2/ device. Lasing at a wavelength as long as 1.1 /spl mu/m was also achieved. We discuss the wavelength limit for lasers using the strain-compensated QW's on GaAs substrates.  相似文献   

18.
A resonant tunneling quantum-dot infrared photodetector   总被引:3,自引:0,他引:3  
A novel device-resonant tunneling quantum-dot infrared photodetector-has been investigated theoretically and experimentally. In this device, the transport of dark current and photocurrent are separated by the incorporation of a double barrier resonant tunnel heterostructure with each quantum-dot layer of the device. The devices with In/sub 0.4/Ga/sub 0.6/As-GaAs quantum dots are grown by molecular beam epitaxy. We have characterized devices designed for /spl sim/6 /spl mu/m response, and the devices also exhibit a strong photoresponse peak at /spl sim/17 /spl mu/m at 300 K due to transitions from the dot excited states. The dark currents in the tunnel devices are almost two orders of magnitude smaller than those in conventional devices. Measured values of J/sub dark/ are 1.6/spl times/10/sup -8/ A/cm/sup 2/ at 80 K and 1.55 A/cm/sup 2/ at 300 K for 1-V applied bias. Measured values of peak responsivity and specific detectivity D/sup */ are 0.063 A/W and 2.4/spl times/10/sup 10/ cm/spl middot/Hz/sup 1/2//W, respectively, under a bias of 2 V, at 80 K for the 6-/spl mu/m response. For the 17-/spl mu/m response, the measured values of peak responsivity and detectivity at 300 K are 0.032 A/W and 8.6/spl times/10/sup 6/ cm/spl middot/Hz/sup 1/2//W under 1 V bias.  相似文献   

19.
Stacked InAs/InGaAs quantum dots are used as an active media of metamorphic InGaAs-InGaAlAs lasers grown on GaAs substrates by molecular beam epitaxy. High quantum efficiency (/spl eta//sub i/>60%) and low internal losses (/spl alpha/<3-4 cm/sup -1/) are realised. The transparency current density per single QD layer is estimated as /spl sim/70 A/cm/sup 2/ and the characteristic temperature is 60 K (20-85/spl deg/C). The emission wavelength exceeds 1.51 /spl mu/m at temperatures above 60/spl deg/C.  相似文献   

20.
The group refractive index dispersion in ultra-broad-band quantum cascade (QC) lasers has been determined using Fabry-Perot spectra obtained by operating the lasers in continuous wave mode below threshold. In the wavelength range of 5-8 /spl mu/m, the global change of the group refractive index is as small as +8.2 /spl times/ 10/sup -3/ /spl mu/m/sup -1/. Using the method of Hakki and Paoli (1975), the subthreshold gain of the lasers has furthermore been measured as a function of wavelength and current. At the wavelength of best performance, 7.4 /spl mu/m, a modal gain coefficient of 16 cm/spl middot/kA/sup -1/ at threshold and a waveguide loss of 18 cm/sup -1/ have been estimated. The gain evolution confirms an earlier assumption that cross-absorption restricted laser action to above 6 /spl mu/m wavelength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号