首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mechanisms of current flow in metal-semiconductor ohmic contacts   总被引:1,自引:0,他引:1  
Published data on the properties of metal-semiconductor ohmic contacts and mechanisms of current flow in these contacts (thermionic emission, field emission, thermal-field emission, and also current flow through metal shunts) are reviewed. Theoretical dependences of the resistance of an ohmic contact on temperature and the charge-carrier concentration in a semiconductor were compared with experimental data on ohmic contacts to II–VI semiconductors (ZnSe, ZnO), III–V semiconductors (GaN, AlN, InN, GaAs, GaP, InP), Group IV semiconductors (SiC, diamond), and alloys of these semiconductors. In ohmic contacts based on lightly doped semiconductors, the main mechanism of current flow is thermionic emission with the metal-semiconductor potential barrier height equal to 0.1–0.2 eV. In ohmic contacts based on heavily doped semiconductors, the current flow is effected owing to the field emission, while the metal-semiconductor potential barrier height is equal to 0.3–0.5 eV. In alloyed In contacts to GaP and GaN, a mechanism of current flow that is not characteristic of Schottky diodes (current flow through metal shunts formed by deposition of metal atoms onto dislocations or other imperfections in semiconductors) is observed.  相似文献   

2.
The use of two generalised carrier transport models to account for the ND−1 dependence of the specific contact resistance (ρc) of metal-semiconductor Ohmic contacts to n-type GaAs is proposed. Both models include the effects of thermionic emission and diffusion across the high-low barrier junction a priori. Calculations of ρc, and comparison with experimental data, show conclusively that thermionic emission is the dominant transport mechanism across the barrier. It is stressed that these models do not rely on prior choices of either of the transport processes. These conclusions are arrived at a posteriori.  相似文献   

3.
The technology for ohmic contacts to group III–V compound semiconductors is reviewed in this paper. The basic principles of current transport in metal-semiconductor (Schottky barrier) contacts are presented first. The modes of current transport considered are thermionic emission over the barrier, and tunneling through the barrier due to thermionic-field or field emission. Special attention is devoted to the parameters of temperature and doping concentration which determine the dominant mode of conduction. As the primary mode of conduction changes from thermionic emission dominated to tunneling dominated, the current-voltage behavior of the contact changes from rectifying to ohmic in character. The experimental techniques for fabricating ohmic contacts to III–V compound semiconductors are then described. Contact problems as they pertain to specific device applications are considered. Finally, present difficulties with contacts to mixed III–V crystals are discussed.  相似文献   

4.
Electrical properties of titanium-HgCdTe contacts   总被引:1,自引:0,他引:1  
Transfer length method (TLM) structures were fabricated to characterize the Ti-HgCdTe contacts. Low-temperature measurement of contact resistance was found to be affected by the background-generated carriers in long wavelength infrared HgCdTe material. Measurements carried out by keeping the TLM structures behind a cold shield showed low contact resistance indicative of the formation of a good “Ohmic” contact. Low specific contact resistance of the order of 10−4 Ω-cm2 makes this contact scheme suitable for the fabrication of photoconductive as well as photovoltaic HgCdTe detectors. Annealing the contacts in air at 60°C for 15 days yielded the specific contact resistance values of the same order of magnitude at room temperature; however, low-temperature measurements show a minor change in the specific contact resistance. The current-voltage measurements show that current transport is dominated by the thermionic field emission mechanism.  相似文献   

5.
A unified simulation of Schottky and ohmic contacts   总被引:3,自引:0,他引:3  
The Schottky contact is an important consideration in the development of semiconductor devices. This paper shows that a practical Schottky contact model is available for a unified device simulation of Schottky and ohmic contacts. The present model includes the thermionic emission at the metal/semiconductor interface and the spatially distributed tunneling calculated at each semiconductor around the interface. Simulation results of rectifying characteristics of Schottky barrier diodes (SBD's) and resistances under high impurity concentration conditions are reasonable, compared with measurements. As examples of application to actual devices, the influence of the contact resistance on salicided MOSFETs with source/drain extension and the immunity of Schottky barrier tunnel transistors (SBTTs) from the short-channel effect (SCE) are demonstrated  相似文献   

6.
We report on low-resistance and thermally stable Pd/Ru ohmic contacts to surface-treated p-GaN (3 × 1017 cm−3). It is shown that annealing at 500°C for 2 min in a N2 ambient improves ohmic contact properties. Specific contact resistance is measured to be 9.2(±0.2) × 10−4 and 2.4(±0.2) × 10−5 Ωcm2 for the as-deposited and annealed samples, respectively. Atomic force microscopy results show that the surfaces of both the contacts are remarkably smooth with a root-mean-square (rms) roughness of about 0.6 nm. The current-voltage-temperature (I-V-T) and calculation results indicate that, for the as-deposited contact, thermionic field emission is dominant, while for the annealed contact, field emission dominates the current flow.  相似文献   

7.
The carrier transport mechanism of Mg/Au ohmic contact for lightly doped β-Ga_2O_3 is investigated. An excellent ohmic contact has been achieved when the sample was annealed at 400 °C and the specific contact resistance is 4.3 × 10-4 Ω·cm2. For the annealed sample, the temperature dependence of specific contact resistance is studied in the range from 300 to 375 K. The specific contact resistance is decreased from 4.3 × 10-4 to 1.59 × 10-4 Ω·cm2 with an increase of test temperature. As combination with the judge of E00, the basic mechanism of current transport is dominant by thermionic emission theory. The effective barrier height between Mg/Au and β-Ga_2O_3 is evaluated to be 0.1 eV for annealed sample by fitting experimental data with thermionic emission model.  相似文献   

8.
We report on ohmic contact measurements of Al, Au, and W metallizations to p-type epitaxial Ge0.9983C0.0017 grown on a (100) Si substrate by molecular beam epitaxy (MBE). Contacts were annealed at various temperatures, and values of specific contact resistance have been achieved which range from 10-5Ω·cm2 to as low as 5.6×10 -6Ω·cm2. Theoretical calculations of the contact resistance of metals on Ge1-xCx with small percentages of carbon, based on the thermionic field emission mechanism of conduction, result in good agreement with the experimental data. We conclude that Al and Au are suitable ohmic contacts to p-Ge0.9983C0.0017 alloys  相似文献   

9.
This paper presents the results of an investigation conducted to understand the formation of very low resistance nonalloyed ohmic contacts to Sn-doped nGaAs grown by molecular-beam, epitaxy (MBE). The measured specific contact resistance is in good agreement with a new thermionic field-emission model presented in this paper that accounts for a number of physical phenomena that are critical in determining the carrier transport mechanisms across the metal-semiconductor interfaces. The experimental and theoretical results are more than two orders of magnitude smaller than previous contact resistance calculations. This discrepancy predominantly occurs because previous contact theories do not account for metal wave functions and include only conduction band effects when calculating the electron wave vector in the semiconductor energy gap. A specific contact resistance as low asR_{c} approx 2 times 10^{-7} Omega.cm2at T = 300 K is obtained for the nonalloyed contacts fabricated in this work.  相似文献   

10.
Lateral current crowding effects on contact resistance measurements in four terminal resistor patterns are discussed by using a computer model based on a three-dimensional resistor network. The model is then applied to extrapolate the contact resistivity in n+, p+ silicon/titanium silicide interfaces. Values in agreement with the ones predicted by the field and thermionic field emission theory are obtained.  相似文献   

11.
Thermionic emission is hypothesized as a mechanism of carrier transport across the high-low barrier of a metal-semiconductor (M-S) ohmic junction. The barrier resistance, based on this theory is calculated and combined with tunneling resistance of the M-S junction to evaluate specific contact resistivity of ohmic contact to n-GaAs. The theoretical results interpret the published experimental data convincingly and thus validate the proposed mechanism of thermionic emission.  相似文献   

12.
Ohmic contacts to p-type CdTe are important for the development of solar cells based on this semiconductor, as for instance CdS/CdTe or ITO/ CdTe solar cells. Ohmic contacts to CdTe Bridgman crystals, doped with phosphorus, have been examined with respect to their resistivity dependence and their variation as a function of time. The ‘specific’ contact resistance r shows a linear dependence on the bulk resistivity; in addition, it is affected by the oxygen content of the CdTe. The lowest r obtained was 0.07Ω cm. With one exception, ali the contacts with nickel, gold and platinum deposited on different crystals show a more or less pronounced increase of r as a function of time.  相似文献   

13.
We have investigated the electrical properties and interfacial reactions of the Si/Ti-based ohmic contacts to Si-doped n-GaN grown by metal organic chemical vapor deposition and the electrical properties were related to the material reactions. Si/Ti contact system was selected because Ti silicides have a low work function comparable to Al and also Si was used widely as an n-type dopant. As the annealing temperature increased, the specific contact resistance of Si/Ti-based ohmic contacts decreased and showed minimum contact decreased and showed minimum contact resistance as low as 3.86 10?6 cm2 after annealing at 900°C for 3 min under N2 ambient. Our experimental results show that the ohmic behavior of Si/Ti-based contact, were attributed to the low barrier height of Ti-silicide/GaN interface, which was formed through the interfacial reaction between Si and Ti layers. In order to clarify the current conduction mechanism of Si/Ti-based contact, temperature dependent contact resistance measurement was carried out for Au(1000 Å)/Ti(400 Å)/Si(1500 Å)/Ti(150 Å) contact system after annealing at 700°C for 3 min. The contact resistance of Si/Ti-based ohmic contact decreased exponentially with the measuring temperature and so it can be concluded that current flows over the low barrier height by thermionic emission.  相似文献   

14.
成彩晶  张向锋  丁嘉欣 《红外》2008,29(3):16-19
本文对p-GaN与Ni/Pt形成欧姆接触及其电流传输机制进行了研究。I-V变温测试曲线是线形的,表明Ni/Pt与p-GaN之所以能形成欧姆接触,是因为Ni/Pt与p-GaN接触在空气中退火时界面处的p-GaN空穴浓度增加了,从而降低了有效势垒高度。在148K~323K范围内,单位接触电阻R_c随测试温度T的升高趋于呈指数下降,表明Ni/Pt与p-GaN欧姆接触的电流传输机制遵循热电子发射。  相似文献   

15.
采用微电子平面工艺,高真空电子束热蒸发金属Ni分别作肖特基接触和欧姆接触,二级场限环终端表面保护,研制出Ni/4H-SiC肖特基势垒二极管(SBD)。I-V特性测量说明,Ni/4H-SiCSBD有较好的整流特性,热电子发射是其主要的运输机理。反向击穿电压达1500V,理想因子为1.2,肖特基势垒高度为0.92eV。  相似文献   

16.
With Ni/Au and Pd/Au metal schemes and low temperature processing, we formed low resistance stable Ohmic contacts to p‐type GaN. Our investigation was preceded by conventional cleaning, followed by treatment in boiling HNO3:HCl (1:3). Metallization was by thermally evaporating 30 nm Ni/15 nm Au or 25 nm Pd/15 nm Au. After heat treatment in O2 + N2 at various temperatures, the contacts were subsequently cooled in liquid nitrogen. Cryogenic cooling following heat treatment at 600 ·C decreased the specific contact resistance from 9.84·10?4 Ωcm2 to 2.65·10?4 Ωcm2 for the Ni/Au contacts, while this increased it from 1.80·10?4 Ωcm2 to 3.34·10?4 Ωcm2 for the Pd/Au contacts. The Ni/Au contacts showed slightly higher specific contact resistance than the Pd/Au contacts, although they were more stable than the Pd contacts. X‐ray photoelectron spectroscopy depth profiling showed the Ni contacts to be NiO followed by Au at the interface for the Ni/Au contacts, whereas the Pd/Au contacts exhibited a Pd:Au solid solution. The contacts quenched in liquid nitrogen following sintering were much more uniform under atomic force microscopy examination and gave a 3 times lower contact resistance with the Ni/Au design. Current‐voltage‐temperature analysis revealed that conduction was predominantly by thermionic field emission.  相似文献   

17.
The contact properties of alloyed Ni/Au-Ge/Mo/Au metallization to npoststagger+In0.5Ga0.5P epilayers grown by gas-source molecular beam epitaxy on GaAs substrates are reported. A minimum specific contact resistance of 10−5 Ωcm2 was obtained forn = 2 × 1019 cm−3 material after alloying at 360° C for 20 sec. Above this temperature outdiffusion of lattice elements and reactions of the metallization with the In0.5Ga0.5P lead to severe morphological changes and degraded contact properties. From the temperature dependence of the contact resistance, thermionic emission was identified as the predominant current transport mechanism in these contacts.  相似文献   

18.
基于结终端扩展的4H-SiC肖特基势垒二极管研制   总被引:1,自引:1,他引:0  
采用高真空电子束热蒸发金属Ni分别作肖特基接触和欧姆接触,离子注入形成结终端扩展表面保护,研制出Ni/4H-SiC肖特基势垒二极管(SBD)。I-V特性测量说明,Ni/4H-SiCSBD有较好的整流特性,热电子发射是其主要的运输机理。实验测量其反向击穿电压达1800V,且反向恢复特性为32ns。  相似文献   

19.
The mesh-structured emitter solar cell (MESC) is introduced as a novel solar cell processing scheme. By the formation of inverted pyramids or microgrooves on a wafer with a homogeneous heavy phosphorus diffusion, a mesh of highly conducting emitter lines is formed. Using this technique, the lateral conductivity of the emitter can be increased, keeping the emitter dark saturation current at a low level. The high phosphorus surface concentration results in a low contact resistance even for screen-printed contacts. Thus, this technique is ideal for solar cells with screen-printed contacts, because the finger spacing of the front contact can be extended, resulting in smaller shadowing losses. Also the processing scheme of high-efficiency solar cells can be simplified, because the formation of the surface texturization and the locally deep diffused emitter can be combined in one step. The first cells with a mesh-structured emitter, evaporated front contacts and local ohmic rear contacts have shown efficien ies up to 21.1%. Lifetime test structures have been used to determine a low dark saturation current of 58 fA cm−2 for the mesh-structured emitter, although the structure is not yet optimized.  相似文献   

20.
For commercial purposes, it is necessary to manufacture high-efficiency and low-cost solar cells using simple processes. The front contact formation is one of the most critical steps in solar cell processing. Although silver paste screen-printed solar cells are the most widespread on the photovoltaic market, their efficiency is strongly limited as a result of shading and resistive losses, or more precisely the high contact resistance. Cu metallization for crystalline Si solar cells has attracted much attention as an alternative to the screen-printing technology. The low-cost Ni/Cu metal contact is regarded as the next generation of metallization processes to still improve the efficiency with a low specific contact resistance; it is formed using low-cost electroless plating and electroplating. A diffusion barrier should be placed between Cu and Si, to prevent Cu diffusion. Ni is shown to be an adequate barrier to Cu diffusion. For these reasons, geometry optimization of metal contacts of the front face, deposited by commercial processes, is investigated in this paper, in order to improve the spectral response of conventional multicrystalline mc-Si silicon solar cells. Their efficiency variation is analyzed as a function of changes in cell parameters (finger separation distance, height and width of finger, sheet resistance emitter...) using simulation programs in MATLAB, using contours to represent the efficiency evolution in terms of two variables. Efficiency gain of more than 0.7% has been achieved in this study. The simulation results were then compared with experimental data in order to be validated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号