首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multiple-stacked InP self-assembled quantum dots (SAQD or QD) were grown on an In0.5Al0.3Ga0.2P matrix lattice-matched on a GaAs (001) substrate using metalorganic chemical vapor deposition. Cathodoluminescence (CL) scanning electron microscopy, and transmission electron microscopy were employed to characterize the optical, morphological, and structural properties of the grown QDs. We found that the CL line width broadens and the surface becomes rough with an increase in the number of stacked QD layers in the structure. However, by introducing thin tensile-strained Al0.6Ga0.4P layers in the middle of In0.5Al0.3Ga0.2P spacer layers to compensate the compressive strain of the InP QD layers, the CL and morphology are significantly improved. Using this technique, 30-stacked InP/In0.5Al0.3Ga0.2P QD structures with improved CL properties and surface morphology were realized.  相似文献   

2.
采用金属有机物化学气相沉积法(MOCVD)生长GaAs/Al0.3Ga0.7As量子阱材料,制备300 m300 m台面,内电极压焊点面积为20 m20 m,外电极压焊点面积为80 m80 m单元量子阱器件两种。利用傅里叶光谱仪对1#,2#样品进行77K液氮温度光谱响应测试。实验结果显示1#,2#样品峰值响应波长分别为8.43 m,8.32 m,与根据薛定谔方程得到器件理论峰值波长8.5 m间误差分别为1.0%,2.1%。实验结果说明MOCVD技术可以满足QWIP生长制备工艺要求,且器件电极压焊点位置与面积大小对器件峰值波长影响不大,而对峰值电流有一定影响。  相似文献   

3.
Al0.3Ga0.7N MSM紫外探测器研究   总被引:1,自引:0,他引:1  
用MOCVD生长的未掺杂的n-Al0.3Ga0.7N制备了MSM结构紫外探测器.器件在5.3 V偏压时暗电流为1 nA,在315nm波长处有陡峭的截止边,在1 V偏压下305 nm峰值波长处探测器的电流响应率为0.023 A/W,要进一步提高器件的响应率,方法之一是优化器件的结构参数,尽量减小叉指电极的宽度.为了检验Au/n-Al0.3Ga0.7N肖特基接触特性,电击穿MSM右边结,由正向I-V特性曲线计算出理想因子n~1.05,零偏势垒高度φB0~1.16eV,表明形成的Au/n-Al0.3Ga0.7N肖特基结较为理想.  相似文献   

4.
设计并研制了一种新型复合沟道Al0.3Ga0.7N/Al0.05Ga0.95N/GaN HEMT(CC-HEMT)微波单片集成压控振荡器(VCO),且测试了电路的性能.CC-HEMT的栅长为1μm,栅宽为100μm.叉指金属-半导体-金属(MSM)变容二极管被设计用于调谐VCO频率.为提高螺旋电感的Q值,聚酰亚胺介质被插入在电感金属层与外延在蓝宝石上GaN层之间.当CC-HEMT的直流偏置为Vgs=-3V,Vds=6V,变容二极管的调谐电压从5.5V到8.5V时,VCO的频率变化从7.04GHz到7.29GHz,平均输出功率为10dBm,平均功率附加效率为10.4%.当加在变容二极管上电压为6.7V时,测得的相位噪声为-86.25dBc/Hz(在频偏100KHz时)和-108dB/Hz(在频偏1MHz时),这个结果也是整个调谐范围的平均值.据我们所知,这个相位噪声测试结果是文献报道中基于GaN HEMT单片VCO的最好结果.  相似文献   

5.
Ni/AlGaN/GaN Schottky barrier diodes were characterized by electrical and optical measurements. Analysis of temperature-dependent (80?K to 550?K) current–voltage characteristics considering various transport mechanisms shows that the tunneling current dominates in the samples investigated. Thermionic emission current, extracted from the total current by a fitting procedure, yielded an effective barrier height of 1.36?eV to 1.39?eV at 300?K, and its slight decrease with increased temperature. This result shows that significantly lower barrier heights reported before (0.73?eV to 0.96?eV) follow from an assumption that the measured and thermionic currents are equal. The barrier height of 1.66?eV extracted from photoemission measurements confirms that electrically evaluated barrier heights are underestimated. The tunneling current contribution is considered to be dislocation governed, and a dislocation density of about 2?×?108?cm?2 is calculated.  相似文献   

6.
在室温下,通过光致发光实验研究了用MBE生长的GaAs/Al0.3Ga0.7As超晶格材料的光致发光特性,对测得的发光峰进行了指认.理论计算和实验结果符合很好.  相似文献   

7.
InAs-based heterostructure barrier varactor (HBV) diodes with In0.3Al0.7As0.4Sb0.6 as the barrier material are demonstrated. Current–voltage and capacitance–voltage characteristics, as well as S-parameters, of HBV diodes with varying barrier thicknesses are examined. Maximum capacitance values and maximum-to-minimum capacitance ratios greater than those predicted by traditional HBV models were measured. The HBVs’ unconventional behavior in terms of charge accumulation layers adjacent to the wide bandgap barrier is discussed.  相似文献   

8.
在利用金属有机化学气相沉积(MOCVD)方法生长的Al0.3Ga0.7N材料上制备了平面和台面结构的肖特基探测器.I-V和光谱响应测试结果表明:台面结构器件的反向漏电流大于平面结构器件的反向漏电流,它们的势垒高度分别为0.71 eV和0.90 eV,理想因子分别为1.12和1.02;峰值响应率分别为0.07 A/W和0.005 A/W,台面结构器件的响应光谱曲线在响应波段比较平坦,而平面结构器件的光谱响应是一条随着波长的减小而降低的曲线.这些现象可能主要是由于台面结构的欧姆接触电阻及串联电阻相对较小和离子束刻蚀对台面结构所带来的损伤所致.  相似文献   

9.
Si3N4/GaAs metal-insulator-semiconductor (MIS) interfaces with Si(10Å)/ Al0.3Ga0.7As (20Å) interface control layers have been characterized using capacitance-voltage (C-V) and conductance methods. The structure was in situ grown by a combination of molecular beam epitaxy and chemical vapor deposition. A density of interface states in the 1.1 × 1011 eV-1 cm-2 range near the GaAs midgap as determined by the conductance loss has been attained with an ex situ solid phase annealing of 600°C in N2 ambient. A dip quasi-static C-V demonstrating the inversion of the minority-carrier verifies the decent interface quality of GaAs MIS interface. The hysteresis and frequency dispersion of the MIS capacitors were lower than 100 mV, some of them as low as 50 mV under a field swing of about ±2 MV/cm. The increase of the conductance loss at higher frequencies was observed when employing the surface potential toward conduction band edge, suggesting the dominance of faster traps. Self-aligned gate depletion mode GaAs metal-insulator-semiconductor field-effect transistors with Si/Al0.3Ga0.7As interlayers having 3 μm gate lengths exhibited a transconductance of about 114 mS/mm. The present article reports the first application of pseudomorphic Si/ Al0.3Ga0.7As interlayers to ideal GaAs MIS devices and demonstrates a favorable interface stability.  相似文献   

10.
A Stark shift of 40 nm at 1340 nm in a bilayer InAs/GaAs quantum dot ridge waveguide is reported. Time-resolved measurements indicate absorption recovery times of 7 ps at -8 V. Such favourable properties are desirable for intensity and phase modulators  相似文献   

11.
We report broadband microwave noise characteristics of a high-linearity composite-channel HEMT (CC-HEMT). Owing to the novel composite-channel design, the CC-HEMT exhibits high gain and high linearity such as an output third-order intercept point (OIP3) of 33.2 dBm at 2 GHz. The CC-HEMT also exhibits excellent microwave noise performance. For 1-/spl mu/m gate-length devices, a minimum noise figure (NF/sub min/) of 0.7 dB and an associated gain (G/sub a/) of 19 dB were observed at 1 GHz, and an (NF/sub mi/) of 3.3 dB and a G/sub a/ of 10.8 dB were observed at 10 GHz. The dependence of the noise characteristics on the physical design parameters, such as the gate-source and gate-drain spacing, is also presented.  相似文献   

12.
The influence of the design of the metamorphic buffer of In0.7Al0.3As/In0.75Ga0.25As metamorphic nanoheterostructures for high-electron-mobility transistors (HEMTs) on their electrical parameters and photoluminescence properties is studied experimentally. The heterostructures are grown by molecular-beam epitaxy on GaAs (100) substrates with linear or step-graded In x Al1 ? x As metamorphic buffers. For the samples with a linear metamorphic buffer, strain-compensated superlattices or inverse steps are incorporated into the buffer. At photon energies ?ω in the range 0.6–0.8 eV, the photoluminescence spectra of all of the samples are identical and correspond to transitions from the first and second electron subbands to the heavy-hole band in the In0.75Ga0.25As/In0.7Al0.3As quantum well. It is found that the full width at half-maximum of the corresponding peak is proportional to the two-dimensional electron concentration and the luminescence intensity increases with increasing Hall mobility in the heterostructures. At photon energies ?ω in the range 0.8–1.3 eV corresponding to the recombination of charge carriers in the InAlAs barrier region, some features are observed in the photoluminescence spectra. These features are due to the difference between the indium profiles in the smoothing and lower barrier layers of the samples. In turn, the difference arises from the different designs of the metamorphic buffer.  相似文献   

13.
A narrow peak at the leading edge of the current pulse was found in samples of p-GaAs/Al0.3Ga0.7As structures subjected to a high electric field. An analysis of the shape and height of the peak as a function of the electric field, as well as the field redistribution along the sample, allows us to conclude that domain instability exists under these conditions. It is also shown that the energy of holes heated in moderate electric fields can significantly exceed the optical phonon energy.  相似文献   

14.
The dependence on photon energy of the persistent photoconductivity (PPC) in selectively doped high mobility Al0.3Ga0.7As—GaAs heterostructures has been measured at temperatures below 80 K. A decrease in conductivity due to light exposure at one wavelength after exposure to light at another wavelength — photo-quenching — is also found. It is concluded that deep centers in GaAs and AlGaAs other than the DX center in AlGaAs are mainly responsible for PPC.  相似文献   

15.
The ten stacked self-assembled InAs/GaAs quantum dot infrared photodetectors (QDIP) with different Al/sub 0.3/Ga/sub 0.7/As barrier widths and growth temperatures were prepared. Asymmetric current-voltage (I-V) characteristics and 2/spl sim/7.5 /spl mu/m detection window were observed. Peak responsivity of 84 mA/W at -0.4 V and peak specific detectivity of 2.5/spl times/10/sup 9/ cm-Hz/sup 1/2//W at zero bias were observed at 50 K. The characteristics of polarization insensitivity over the incident light and the high background photocurrent suggest that the self-assembled QDIP can be operated at higher temperature (/spl sim/250 K) under normal incidence condition in contrast to quantum well infrared photodetector (QWIP).  相似文献   

16.
Recently, it has been shown that the noise characteristics of heterojunction Al/sub 0.6/Ga/sub 0.4/As-GaAs avalanche photodiodes (APDs) can be optimized by proper selection of the width of the Al/sub 0.6/Ga/sub 0.4/As layer. Similar trends have also been shown theoretically for the bandwidth characteristics. The resulting noise reduction and potential bandwidth enhancement have been attributed to the fact that the high bandgap Al/sub 0.6/Ga/sub 0.4/As layer serves to energize the injected electrons, thereby minimizing their first dead space in the GaAs layer. We show theoretically that the same optimized structures yield optimal breakdown-probability characteristics when the APD is operated in Geiger mode. The steep breakdown-probability characteristics, as a function of the excess bias, of thick multiplication regions (e.g., in a 1000-nm GaAs homojunction) can be mimicked in much thinner optimized Al/sub 0.6/Ga/sub 0.4/As-GaAs APDs (e.g., in a 40-nm Al/sub 0.6/Ga/sub 0.4/As and 200-nm GaAs structure) with the added advantage of having a reduced breakdown voltage (e.g., from 36.5 V to 13.7 V).  相似文献   

17.
Semiconductors - The optimum absorbing-layer thickness in the bottom In0.3Ga0.7As subcell of a triple-junction In0.3Ga0.7As/GaAs/In0.5Ga0.5P solar cell is sought for using the Sentaurus TCAD...  相似文献   

18.
Studies of the grown-in deep-level defects in the undoped n-AlxGa1-xAs (x = 0.3) and GaAs epitaxial layers prepared by the liquid phase epitaxy (LPE) techniques have been made, using DLTS, I-V and C-V measurements. The effect of 300 °C thermal annealing on the grown-in defects was investigated as a function of annealing time. The results showed that significant reduction in these grown-in defects can be achieved via low temperature thermal annealing process. The main electron and hole traps observed in the Al0.3Ga0.7As LPE layer were due to the Ec-0.31 eV and Ev+0.18 eV level, respectively, while for the GaAs LPE layer, the electron traps were due to the Ec-0.42 and 0.60 eV levels, and the hole traps were due to Ev+0.40 and 0.71 eV levels. Research supported in part by the Air Force Wright Aeronautical Laboratories, Aeropropulsion Lab., Wright Patterson Air Force Base, Ohio, subcontract through SCEEE, contract F33615-81-C-2011, task-4, and in part by AFOSR grant no. 81-0187.  相似文献   

19.
It has been recently found that the initial-energy effect, which is associated with the finite initial energy of carriers entering the multiplication region of an avalanche photodiode (APD), can be tailored to reduce the excess noise well beyond the previously known limits for thin APDs. However, the control of the initial energy of injected carriers can be difficult in practice for an APD with a single multiplication layer. In this paper, the dead-space multiplication recurrence theory is used to show that the low noise characteristics associated with the initial-energy effect can be achieved by utilizing a two-layer multiplication region. As an example, a high bandgap Al/sub 0.6/Ga/sub 0.4/As material, termed the energy-buildup layer, is used to elevate the energy of injected carriers without incurring significant multiplication events, while a second GaAs layer with a lower bandgap energy is used as the primary carrier multiplication layer. Computations show that devices can be optimally designed through judicious choice of the charge-layer width to produce excess noise factor levels that are comparable to those corresponding to homojunction APDs benefiting from a maximal initial-energy effect. A structure is presented to achieve precisely that.  相似文献   

20.
For SiGe/Si(001) epitaxial structures with two nonequivalent SiGe quantum wells separated by a thin Si barrier, the spectral and time characteristics of interband photoluminescence corresponding to the radiative recombination of excitons in quantum wells are studied. For a series of structures with two SiGe quantum wells different in width, the characteristic time of tunneling of charge carriers (holes) from the narrow quantum well, distinguished by a higher exciton recombination energy, to the wide quantum well is determined as a function of the Si barrier thickness. It is shown that the time of tunneling of holes between the Si0.85Ge0.15 layers with thicknesses of 3 and 9 nm steadily decreases from ~500 to <5 ns, as the Si barrier thickness is reduced from 16 to 8 nm. At intermediate Si barrier thicknesses, an increase in the photoluminescence signal from the wide quantum well is observed, with a characteristic time of the same order of magnitude as the luminescence decay time of the narrow quantum well. This supports the observation of the effect of the tunneling of holes from the narrow to the wide quantum well. A strong dependence of the tunneling time of holes on the Ge content in the SiGe layers at the same thickness of the Si barrier between quantum wells is observed, which is attributed to an increase in the effective Si barrier height.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号