首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The magnetic, electrical and thermal properties in the La0.5?xLnxCa0.5?ySryMnO3 (Ln=Pr, Nd, Sm) bulk system were investigated. Detailed dc magnetization and linear ac susceptibility measurements reveal that the samples first undergo phase transition from paramagnetic to ferromagnetic phase and then to an antiferromagnetic phase upon further cooling. It is found that both the Curie and Neel temperatures decrease systematically with increasing A-site disorder in these manganites. The electrical resistivity exhibits semiconducting behavior throughout the temperature range investigated and the electronic conduction mechanism can be conveniently described within the framework of the variable range hopping model above T=150 K. The Seebeck coefficient (S) in the magnetically ordered regime infers that the complicated temperature dependence of S is an indication of electron–magnon scattering. Specific heat measurements depict a broadened hump in the vicinity of TC, indicating the existence of magnetic ordering and magnetic inhomogeneity in the samples. The temperature dependence of thermal conductivity, κ(T), reveals a positive dκ/dT in the paramagnetic region, which may be related to the local anharmonic lattice distortions associated with small polarons.  相似文献   

3.
Ceramic (La0.7Ca0.3)1 ? x Mn1 + x O3 samples are studied by X-ray diffraction, resistive, magnetic, 55Mn NMR, and magnetoresistance methods. The concentration changes of lattice parameter a of the cubic perovskite structure and its average ionic radius are in good agreement if the concentrations of anion and cation vacancies and nanostructured clusters with Mn2+ in the A positions increase with x. Phase transition temperatures T ms and T c weakly depend on x, and the electrical resistivity and the activation energy decrease substantially with increasing x due to a change in the imperfection of the perovskite structure. An analysis of the broad asymmetric 55Mn NMR spectra of the samples indicate a high-frequency Mn3+? Mn4+ electron superexchange and nonuniform magnetic and valence states of these ions because of a nonuniform distribution of ions and defects, which decrease the amplitude resonance frequency with increasing x. The magnetoresistive (MR) effect near phase-transition temperatures T ms and T c increases substantially with x and is caused by the effect of a magnetic field on the scattering of charge carriers by intracrystallite nanostructured heterogeneities of an imperfect perovskite structure. The second MR effect is located in the low-temperature range, is related to tunneling through mesostructural crystallite boundaries, and decreases weakly with increasing x. A correlation is found between the hyperstoichiometric manganese content, the imperfection of the perovskite structure, and the magnitude of the MR effect.  相似文献   

4.
The results of the influence of the isotopic substitution of oxygen 16O → 18O on the susceptibility, electrical resistance, heat capacity, and the magnetocaloric effect in univalently doped manganite La0.8Ag0.1MnO3 are presented. It has been shown that the substitution of 16O by a heavier isotope 18O leads to a shift in T C and affects all the measured coefficients. This result indicates the necessity of accounting the lattice dynamics when explaining the mechanism of colossal magnetoresistance in manganites.  相似文献   

5.
Magnetization, electrical resistivity and magnetoresistance of Pr0.50Ba0.50MnO3−δ manganites with perovskite structure have been investigated as a function of preparation conditions. It was found that the as-prepared samples (prepared in air) show TC=110 K (first order phase transition), whereas for those annealed in flowing argon the TC value increases up to 340 K without change of cubic symmetry (second order phase transition). Ferromagnet–paramagnet transition is accompanied by both a metal–insulator transition and a magnetoresistance peak. The X-ray study has revealed that the samples annealed in argon have broad peaks apparently due to microstrains and crystal structure defects. The argon-treated samples improve the magnetization after subsequent annealing in air at T⩽1000°C. TC of argon-treated samples is stable with respect to annealing in air up to 1300°C where it becomes again 110 K. In contrast, a treatment in vacuum destroys the ferromagnetic order. Auger-spectroscopy has not revealed any additional ions except Pr, Ba, Mn and O for all the samples. External pressure enhances the Curie point of the sample prepared in air at a rate of 43 K/GPa. We have observed that the samples Pr1−xBaxMnO3−δ, x⩾0.30, exhibited the above-mentioned effect of increasing TC after treatment in flowing argon without changes of the phase state, whereas the samples x<0.30 decomposed into different phases. The dramatic increase of TC after argon treatment is supposed to result from microstrains and crystal structure defects in the sample.  相似文献   

6.
Samples of La1 ? x Ca x Mn1 ? z O3 + δ (x = 0.05?0.15) with deficient manganese and excess oxygen δ do not pass into a metallic state and have low spin ordering temperatures T C at acceptor Mn4+ concentrations near the percolation threshold. These results are explained by carrier localization in clusters near cation vacancies. A break in the carrier transport chain Mn-O-Mn in the form of absent manganese favors cluster formation and decreases the double exchange energy and T C of the samples. Closeness to the percolation threshold results in strong (more than four orders of magnitude) changes in the electrical resistivity in a magnetic field. The changes in the cluster sizes with the temperature and the magnetic field that are determined from the magnetotransport properties are satisfactorily described in the model of phase separation into small-radius metallic droplets in a dielectric paramagnetic and an antiferromagnetic matrices.  相似文献   

7.
司继伟  曹庆琪  顾本喜  都有为 《中国物理》2005,14(10):2117-2121
A series of polycrystalline Cu-doped n=2 Ruddlesden-Popper manganates La1.2Sr1.8CuzMn(2-x)O7 (x=0, 0.04, 0.13) were synthesized by the solid state reaction method. The effect of Cu doping on the magnetic and transport properties has been studied. It is found that Cu substitution for Mn greatly affects the magnetic and electrical properties of the parent phase La1.2Sr1.8Mn2O7. With the increase of Cu content, the system undergoes a transition from longrange ferromagnetic order to the spin glass state and further to an antiferromagnetic order. A little of Cu dopant can lead to the samples showing semiconductor or insulator behaviour in the whole observed temperature range while the parent phase has a metal-insulator transition. These samples show colossal magnetoresistance at low temperatures and the value of it decreases with increasing Cu content.  相似文献   

8.
The structure, transport properties and the magnetoresistance behavior in the temperature interval 77–400 K of the perovskite-like lanthanum manganites La0.6Pb0.4−xMgx+yMnO3 (x=0, 0.1, 0.2 and y=0, 0.2) were investigated. Polycrystalline bulk samples were prepared by sol–gel self-combustion and subsequent heat treatment at 1000 °C for different times, 40, 80, 160 and 320 min. All manganites exhibit a peak in the resistivity around 200–250 K, below the ferromagnetic ordering temperature (320–330 K). An isotropic and negative magnetoresistance has been observed in all compounds. Magnetoresistance MR exhibits a peak in the temperature range 130–150 K, below SC–metal transition temperature. Magnitude of MR at the peaks was nearly 27% in the magnetic field of 2 T. At room temperature, a magnetoresistance of 9.5% for La0.6Pb0.2Mg0.2MnO3 composition was obtained. Longer heat treatment time enhanced the magnetorezistive properties.  相似文献   

9.
In this paper, the effect of nanostructures on the magnetic properties like the specific saturation magnetization (σS) and the coercivity (HC) for Mn0.4Zn0.6Fe2O4 ferrite prepared by the co-precipitation method has been presented. We have shown by means of X-ray diffraction that the resulting ferrite is made up of nanoparticles, and that the average size of these nanoparticles calculated with the Scherrer formula depends upon the sintering temperature. When the sintering temperature is increased from 500 to 900 °C, the average nanoparticle diameter varies from 19.3 to 36.4 nm. The nanoparticle phase is further confirmed by scanning electron microscopy (SEM). Both results are found to be in good agreement. The magnetic properties are explained on the basis of the single-domain and multi-domain theory.  相似文献   

10.
The synthesis of a series of Mg–Cu–Zn ferrites with the substitution of Cu for Mg has been obtained by solid-state reaction method. Microstuctural and structural analyses were carried out using a scanning electron microscope and X-ray diffraction (XRD), respectively. The lattice parameter is found to increase with increasing copper content. A remarkable densification is observed with the addition of Cu ions in the ferrites. Microstructural analyses indicate that CuO influences the microstructure of the ferrites by the formation of liquid phase during sintering. The grain size significantly increases with increasing copper content. Exaggerated grain growth is observed for the samples of x=0.25–0.35. The initial magnetic permeability (μ′) increases sharply with increasing concentration of Cu ions. This increase in μ′ is explained with the grain growth mechanism and enhanced densification of the ferrites. The resonance frequency of all the samples shifts toward the lower frequency as the permeability increases with Cu content. Sintering temperature Ts also affects the densification, grain growth and initial magnetic permeability of the samples.  相似文献   

11.
We have successfully prepared Cu–Al–O thin films on silicon (100) and quartz substrates by radio frequency (RF) magnetron sputtering method. The as-deposited Cu–Al–O film is amorphous in nature and post-annealing treatment in argon ambience results in crystallization of the films and the formation of CuAlO2. The annealing temperature plays an important role in the surface morphology, phase constitution and preferred growth orientation of CuAlO2 phase, thus affecting the properties of the film. The film annealed at 900 °C is mainly composed of CuAlO2 phase and shows smooth surface morphology with well-defined grain boundaries, thus exhibiting the optimum optical–electrical properties with electrical resistivity being 79.7 Ω·cm at room temperature and optical transmittance being 80% in visible region. The direct optical band gaps of the films are found in the range of 3.3–3.8 eV depending on the annealing temperature.  相似文献   

12.
The effects of annealing temperature and manganese substitution on the formation, microstructure and magnetic properties of MnxZn1−xFe2O4 (with x varying from 0.3 to 0.9) through a solid-state method have been investigated. The correlation of the microstructure and the grain size with the magnetic properties of Mn–Zn ferrite powders was also reported. X-ray diffraction (XRD), a scanning electron microscope (SEM) and a vibrating sample magnetometer (VSM) were utilized in order to study the effect of variation of manganese substitution and its impact on crystal structure, crystalline size, microstructure and magnetic properties of the ferrite powders formed. The XRD analysis showed that pure single phases of Mn–Zn ferrites were obtained by increasing the annealing temperature to 1200–1300 °C. Increasing the annealing temperature to ?1300 °C led to abnormal grain growth with inter-granular pores and this led to a decrease in the saturation magnetization. Moreover, an increase in the Mn2+ ion substitution up to x=0.8 increased the lattice parameter of the formed powders due to the high ionic radii of the Mn2+ ion. Mn–Zn ferrites phases were formed and the positions of peaks were shifted by substituting manganese. The average crystalline size was increased by increasing the annealing temperature and decreased by increasing the substitution by manganese up to 0.8. The average crystalline size was in the range 95–137.3 nm. The saturation magnetization of the Mn–Zn-substituted ferrite powders increased continuously with an increase in the Mn concentration up to 0.8 at annealing temperatures of 1200–1300 °C. Further increase of Mn substitution up to 0.9 led to a decrease of saturation magnetization. The saturation magnetization increased from 17.3 emu/g for the Mn0.3Zn0.7Fe2O4 phase particles produced to 59.08 emu/g for Mn0.8Mn0.2Fe2O4 particles.  相似文献   

13.
14.
In this work we report crystallographic structure variations and the related modifications on the magnetic behavior of La0.7Ca0.3MnOδ introduced by heat-treatments in different synthesis atmospheric conditions. We have prepared polycrystalline ceramic samples using a modified polymeric precursors method, which produces highly homogeneous specimens.The use of argon atmosphere enlarges the crystalline c-axis as detected by Rietveld refinements. As a consequence, an improvement in the magnetic transition temperature TC of the samples was observed.Our results also indicate that different heat-treatment conditions change the magnetic interactions between the ferromagnetic (F) and antiferromagnetic (AF) structures of these systems. Our conclusions rely on the use of AC magnetic susceptibility measurements as the experimental tool for measuring these variations.  相似文献   

15.
Mixed manganese-zinc and nickel-zinc ferrites of composition Mn0.2Ni0.8−xZnxFe2O4 where x=0.4x=0.4, 0.5 and 0.6 have been synthesized by the citrate precursor technique. Decomposition of the precursor at temperatures as low as 500 °C gives the ferrite powder. The ferrites have been investigated for their electrical and magnetic properties such as saturation magnetization, initial permeability, Curie temperature, AC-resistivity and dielectric constant as a function of sintering temperature and zinc content. Structural properties such as lattice parameter, grain size and density are also studied. The mixed compositions exhibited higher saturation magnetizations at sintering temperatures as low as 1200 °C. While the Curie temperature decreased with zinc content, the permeability was found to increase. The AC-resistivity ranged from 105–107 Ω cm and decreased with zinc content and sintering temperature. The dielectric constants were lower than those normally reported for the Mn–Zn ferrites. Samples sintered at 1400 °C densified to about 94% of the theoretical density and the grain size was of the order of about 1.5 μm for the samples sintered at 1200 °C and increased subsequently with sintering temperature.  相似文献   

16.
This paper reports on a study of the effect of isotopic 16O → 18O oxygen substitution on the heat capacity and magnetocaloric properties of the La0.7Ca0.3MnO3 manganite. Direct measurements of the magnetocaloric effect have demonstrated that, in La0.7Ca0.3MnO3, the effect reaches a fairly large magnitude, but its temperature width is rather small. The 16O ar 18O isotopic substitution shifts the temperature of the maximum of the effect toward lower temperatures while leaving its magnitude practically unchanged. The magnetocaloric effect in the La0.7Ca0.3Mn16O3 + La0.7Ca0.3Mn18O3 sandwich structure has been measured by the direct method. It has been shown that fabrication of a sandwich from materials with close temperatures of the maxima of the magnetocaloric effect permits increasing the relative cooling power (RCP) compared with that of the starting materials.  相似文献   

17.
The temperature dependences of the total heat capacity and the lattice components of the bulk modulus, the volume thermal expansion coefficient, and the mean-square deviation of atoms from the equilibrium positions of nearly magnetic δ-plutonium (using the Pu0.96Ga0.04 alloy as an example) have been calculated within the framework of the self-consistent thermodynamic model. The electronic heat capacity has been calculated using the results obtained in terms of the self-consistent spin-fluctuation theory based on the inclusion of the strong magnetic anharmonicity, which leads to a splitting of the electronic spectra by fluctuating exchange fields. On this basis, the effect of phonon anharmonicity not only on the lattice heat capacity but also on other thermal and elastic properties has been considered.  相似文献   

18.
19.
Single-step low-temperature solution combustion (LCS) synthesis was adopted for the preparation of LaMnO3+ δ (LM) nanopowders. The powders were well characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), surface area and Fourier transform infrared spectroscopy (FTIR). The PXRD of as-formed LM showed a cubic phase but, upon calcination (900°C, 6 h), it transformed into a rhombohedral phase. The effect of fuel on the formation of LM was examined, and its structure and magnetoresistance properties were investigated. Magnetoresistance (MR) measurements on LM were carried out at 0, 1, 4 and 7 T between 300 and 10 K. LM (fuel-to-oxidizer ratio; ψ = 1) showed an MR of 17% at 1 T, whereas, for 4 and 7 T, it exhibited an MR of 45 and 55%, respectively, near the T M-I. Metallic resistivity data below T M-I showed that the double exchange interaction played a major role in this compound. It was interesting to observe that the sample calcined at 1200°C for 3 h exhibited insulator behavior.  相似文献   

20.
《Current Applied Physics》2010,10(3):724-728
Fe3+ doped δ-Bi2O3 thin films were prepared by sol–gel method on quartz glass substrate at room temperature and annealed at 800 °C. The thin films were then characterized for structural, surface morphological, optical and electrical properties by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), optical absorption measurements and d.c. two-probe, respectively. The XRD analyses revealed the formation δ-Bi2O3 followed by a mixture of Bi25FeO40 and Bi2Fe4O9. SEM images showed reduction in grain sizes after doping and the optical studies showed a direct band gap which reduced from 2.39 eV for pure δ-Bi2O3 to 1.9 eV for 10% Fe3+ doped δ-Bi2O3 thin film. The electrical conductivity measurement showed the films are semiconductors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号