首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的 探讨结缔组织生长因子(CTGF)在体外能否够促进肾小管上皮细胞的表型转化,以及这一作用与转化生长因子β(TGF—β)的关系。方法 将NRK52E肾小管上皮细胞株细胞分组处理,采用RT—PCR和Western印迹的方法检测CTGF mRNA水平和蛋白水平的表达;Western印迹和流式细胞仪观察α—SMA的表达。结果 正常体外培养的NRK52E肾小管上皮细胞表达少量的CTGF,加入TGF—β1 10ng/ml刺激48h后,CTGFmRNA和蛋白水平的表达都显著升高,α—SMA蛋白表达和荧光强度也明显增加;同时加入TGF—β1中和抗体后,CTGF和α—SMA的表达都显著降低。经过反义寡核苷酸处理48h,几乎检测不到CTGF mRNA和蛋白的表达,并且CTGF反义寡核苷酸可以基本消除TGF—β1引起的细胞α—SMA表达增强,而相同时间和剂量的CTGF正义寡核苷酸不能引起相应的改变。结论 CTGF和TGF—β1都可以促使体外培养的肾小管上皮细胞α-SMA表达增强,并且CTGF作为TGF—β1的下游效应介质而起作用,提示CTGF参与了肾小管上皮细胞的转分化。  相似文献   

2.
目的探讨转化生长因子[β1(TCF-β1)对人近端肾小管上皮细胞系HK-2中结缔组织生长因子(CTGF)基因启动子活性的调控作用,以及丝裂原激活蛋白激酶(MAPK)途径对该生长因子作用的影响。方法构建含有人类CTGF基因启动子的报告基因pCTGF-luc,将其瞬时转染HK-2细胞。通过检测荧光素酶的活性观察TGF-β1和MAPK途径抑制剂对CTGF基因启动子活性的影响。结果TGF-β1以剂量和时间依赖方式上调HK-2中CTGF基因启动子的活性。最佳刺激浓度是5ng/ml,最佳刺激时间为12h,荧光素酶相对活性分别为对照组的1.82倍和2.10倍(P〈0.05)。应用PD98059、SB203580和SP600125分别特异性抑制MAPK途径的胞外信号调节蛋白激酶(ERK)、蛋白激酶p38(p38MAPK)和c-Jun-氨基末端激酶(JNK)通路,对TGF-β1上调CTGF启动子活性的作用有不同影响。PD98059显著增加HK-2中pCTGF-luc的基础活性.并在一定浓度范围内(0.5~10μmol/L)促进TGF-β1的上调作用。SB203580对pCTGF-luc基础活性无影响,但以剂量依赖方式显著抑制TGF-β1的激活效应。而SP600125对基础状态和TGF-β1刺激下CTGF基因启动子活性无影响。结论TGF-β1以剂量和时间依赖方式上调HK-2中CTGF基因启动子活性,在转录水平调节CTGF表达。MAPK途径的ERK和p38MAPK通路可影响TGF-β1的这一调控作用。  相似文献   

3.
Objective To examine the relationship of the inhibitory effect of vascular endothelial growth factor(VEGF) on epithelial-mesenchymal transition (EMT) induced by TGF-β1 in HK2 cells with the expression of connective tissue growth factor (CTGF) and PI3K-Akt pathway. Methods The cultured HK2 cells were divided into the following groups: normal control group, TGF-β1 (5 μg/L) group, VEGF (100 μg/L) group, TGF-β1 plus VEGF group. LY294002 (25 μmol/L), the blocker of PI3K-Akt pathway, was added to each of above-mentioned groups for the second part of the study, α-smooth muscle actin (α-SMA) and E-cadherin expressions of HK2 cells were assessed with double-stain immunocytochemistry method. The mRNA and protein expressions of α-SMA and CTGF of cells were assessed with RT-PCR and Western blot. The expressions of fibronectin (FN) and collagen Ⅰ (Col Ⅰ) in medium were assessed with ELISA. Results The expressions of α-SMA and CTGF significantly increased in HK2 cells treated with TGF-β1 compared with those in normal control (P<0.05), while significantly decreased in cells co-treated with TGF-β1 and VEGF compared with those treated with TGF-β1 alone (P<0.05, respectively). The expression of E-cadherin was exactly opposite to that of α-SMA. When LY294002 was added to TGF-β1 and VEGF co-treated cells, the expressions of α-SMA, CTGF, FN and Col Ⅰ were markedly up-regulated, when compared with those without LY294002 treatment (P<0.05). Conclusion Inhibitory effect of VEGF on TGF-β1-induced EMT of HK2 ceils in vitro may be related to down-regulation of CTGF expression and reduction of FN and Col Ⅰ, which may be partly dependent on PI3K-Akt pathway.  相似文献   

4.
Objective To examine the relationship of the inhibitory effect of vascular endothelial growth factor(VEGF) on epithelial-mesenchymal transition (EMT) induced by TGF-β1 in HK2 cells with the expression of connective tissue growth factor (CTGF) and PI3K-Akt pathway. Methods The cultured HK2 cells were divided into the following groups: normal control group, TGF-β1 (5 μg/L) group, VEGF (100 μg/L) group, TGF-β1 plus VEGF group. LY294002 (25 μmol/L), the blocker of PI3K-Akt pathway, was added to each of above-mentioned groups for the second part of the study, α-smooth muscle actin (α-SMA) and E-cadherin expressions of HK2 cells were assessed with double-stain immunocytochemistry method. The mRNA and protein expressions of α-SMA and CTGF of cells were assessed with RT-PCR and Western blot. The expressions of fibronectin (FN) and collagen Ⅰ (Col Ⅰ) in medium were assessed with ELISA. Results The expressions of α-SMA and CTGF significantly increased in HK2 cells treated with TGF-β1 compared with those in normal control (P<0.05), while significantly decreased in cells co-treated with TGF-β1 and VEGF compared with those treated with TGF-β1 alone (P<0.05, respectively). The expression of E-cadherin was exactly opposite to that of α-SMA. When LY294002 was added to TGF-β1 and VEGF co-treated cells, the expressions of α-SMA, CTGF, FN and Col Ⅰ were markedly up-regulated, when compared with those without LY294002 treatment (P<0.05). Conclusion Inhibitory effect of VEGF on TGF-β1-induced EMT of HK2 ceils in vitro may be related to down-regulation of CTGF expression and reduction of FN and Col Ⅰ, which may be partly dependent on PI3K-Akt pathway.  相似文献   

5.
Objective To examine the relationship of the inhibitory effect of vascular endothelial growth factor(VEGF) on epithelial-mesenchymal transition (EMT) induced by TGF-β1 in HK2 cells with the expression of connective tissue growth factor (CTGF) and PI3K-Akt pathway. Methods The cultured HK2 cells were divided into the following groups: normal control group, TGF-β1 (5 μg/L) group, VEGF (100 μg/L) group, TGF-β1 plus VEGF group. LY294002 (25 μmol/L), the blocker of PI3K-Akt pathway, was added to each of above-mentioned groups for the second part of the study, α-smooth muscle actin (α-SMA) and E-cadherin expressions of HK2 cells were assessed with double-stain immunocytochemistry method. The mRNA and protein expressions of α-SMA and CTGF of cells were assessed with RT-PCR and Western blot. The expressions of fibronectin (FN) and collagen Ⅰ (Col Ⅰ) in medium were assessed with ELISA. Results The expressions of α-SMA and CTGF significantly increased in HK2 cells treated with TGF-β1 compared with those in normal control (P<0.05), while significantly decreased in cells co-treated with TGF-β1 and VEGF compared with those treated with TGF-β1 alone (P<0.05, respectively). The expression of E-cadherin was exactly opposite to that of α-SMA. When LY294002 was added to TGF-β1 and VEGF co-treated cells, the expressions of α-SMA, CTGF, FN and Col Ⅰ were markedly up-regulated, when compared with those without LY294002 treatment (P<0.05). Conclusion Inhibitory effect of VEGF on TGF-β1-induced EMT of HK2 ceils in vitro may be related to down-regulation of CTGF expression and reduction of FN and Col Ⅰ, which may be partly dependent on PI3K-Akt pathway.  相似文献   

6.
Objective To examine the relationship of the inhibitory effect of vascular endothelial growth factor(VEGF) on epithelial-mesenchymal transition (EMT) induced by TGF-β1 in HK2 cells with the expression of connective tissue growth factor (CTGF) and PI3K-Akt pathway. Methods The cultured HK2 cells were divided into the following groups: normal control group, TGF-β1 (5 μg/L) group, VEGF (100 μg/L) group, TGF-β1 plus VEGF group. LY294002 (25 μmol/L), the blocker of PI3K-Akt pathway, was added to each of above-mentioned groups for the second part of the study, α-smooth muscle actin (α-SMA) and E-cadherin expressions of HK2 cells were assessed with double-stain immunocytochemistry method. The mRNA and protein expressions of α-SMA and CTGF of cells were assessed with RT-PCR and Western blot. The expressions of fibronectin (FN) and collagen Ⅰ (Col Ⅰ) in medium were assessed with ELISA. Results The expressions of α-SMA and CTGF significantly increased in HK2 cells treated with TGF-β1 compared with those in normal control (P<0.05), while significantly decreased in cells co-treated with TGF-β1 and VEGF compared with those treated with TGF-β1 alone (P<0.05, respectively). The expression of E-cadherin was exactly opposite to that of α-SMA. When LY294002 was added to TGF-β1 and VEGF co-treated cells, the expressions of α-SMA, CTGF, FN and Col Ⅰ were markedly up-regulated, when compared with those without LY294002 treatment (P<0.05). Conclusion Inhibitory effect of VEGF on TGF-β1-induced EMT of HK2 ceils in vitro may be related to down-regulation of CTGF expression and reduction of FN and Col Ⅰ, which may be partly dependent on PI3K-Akt pathway.  相似文献   

7.
Objective To examine the relationship of the inhibitory effect of vascular endothelial growth factor(VEGF) on epithelial-mesenchymal transition (EMT) induced by TGF-β1 in HK2 cells with the expression of connective tissue growth factor (CTGF) and PI3K-Akt pathway. Methods The cultured HK2 cells were divided into the following groups: normal control group, TGF-β1 (5 μg/L) group, VEGF (100 μg/L) group, TGF-β1 plus VEGF group. LY294002 (25 μmol/L), the blocker of PI3K-Akt pathway, was added to each of above-mentioned groups for the second part of the study, α-smooth muscle actin (α-SMA) and E-cadherin expressions of HK2 cells were assessed with double-stain immunocytochemistry method. The mRNA and protein expressions of α-SMA and CTGF of cells were assessed with RT-PCR and Western blot. The expressions of fibronectin (FN) and collagen Ⅰ (Col Ⅰ) in medium were assessed with ELISA. Results The expressions of α-SMA and CTGF significantly increased in HK2 cells treated with TGF-β1 compared with those in normal control (P<0.05), while significantly decreased in cells co-treated with TGF-β1 and VEGF compared with those treated with TGF-β1 alone (P<0.05, respectively). The expression of E-cadherin was exactly opposite to that of α-SMA. When LY294002 was added to TGF-β1 and VEGF co-treated cells, the expressions of α-SMA, CTGF, FN and Col Ⅰ were markedly up-regulated, when compared with those without LY294002 treatment (P<0.05). Conclusion Inhibitory effect of VEGF on TGF-β1-induced EMT of HK2 ceils in vitro may be related to down-regulation of CTGF expression and reduction of FN and Col Ⅰ, which may be partly dependent on PI3K-Akt pathway.  相似文献   

8.
Objective To examine the relationship of the inhibitory effect of vascular endothelial growth factor(VEGF) on epithelial-mesenchymal transition (EMT) induced by TGF-β1 in HK2 cells with the expression of connective tissue growth factor (CTGF) and PI3K-Akt pathway. Methods The cultured HK2 cells were divided into the following groups: normal control group, TGF-β1 (5 μg/L) group, VEGF (100 μg/L) group, TGF-β1 plus VEGF group. LY294002 (25 μmol/L), the blocker of PI3K-Akt pathway, was added to each of above-mentioned groups for the second part of the study, α-smooth muscle actin (α-SMA) and E-cadherin expressions of HK2 cells were assessed with double-stain immunocytochemistry method. The mRNA and protein expressions of α-SMA and CTGF of cells were assessed with RT-PCR and Western blot. The expressions of fibronectin (FN) and collagen Ⅰ (Col Ⅰ) in medium were assessed with ELISA. Results The expressions of α-SMA and CTGF significantly increased in HK2 cells treated with TGF-β1 compared with those in normal control (P<0.05), while significantly decreased in cells co-treated with TGF-β1 and VEGF compared with those treated with TGF-β1 alone (P<0.05, respectively). The expression of E-cadherin was exactly opposite to that of α-SMA. When LY294002 was added to TGF-β1 and VEGF co-treated cells, the expressions of α-SMA, CTGF, FN and Col Ⅰ were markedly up-regulated, when compared with those without LY294002 treatment (P<0.05). Conclusion Inhibitory effect of VEGF on TGF-β1-induced EMT of HK2 ceils in vitro may be related to down-regulation of CTGF expression and reduction of FN and Col Ⅰ, which may be partly dependent on PI3K-Akt pathway.  相似文献   

9.
Objective To examine the relationship of the inhibitory effect of vascular endothelial growth factor(VEGF) on epithelial-mesenchymal transition (EMT) induced by TGF-β1 in HK2 cells with the expression of connective tissue growth factor (CTGF) and PI3K-Akt pathway. Methods The cultured HK2 cells were divided into the following groups: normal control group, TGF-β1 (5 μg/L) group, VEGF (100 μg/L) group, TGF-β1 plus VEGF group. LY294002 (25 μmol/L), the blocker of PI3K-Akt pathway, was added to each of above-mentioned groups for the second part of the study, α-smooth muscle actin (α-SMA) and E-cadherin expressions of HK2 cells were assessed with double-stain immunocytochemistry method. The mRNA and protein expressions of α-SMA and CTGF of cells were assessed with RT-PCR and Western blot. The expressions of fibronectin (FN) and collagen Ⅰ (Col Ⅰ) in medium were assessed with ELISA. Results The expressions of α-SMA and CTGF significantly increased in HK2 cells treated with TGF-β1 compared with those in normal control (P<0.05), while significantly decreased in cells co-treated with TGF-β1 and VEGF compared with those treated with TGF-β1 alone (P<0.05, respectively). The expression of E-cadherin was exactly opposite to that of α-SMA. When LY294002 was added to TGF-β1 and VEGF co-treated cells, the expressions of α-SMA, CTGF, FN and Col Ⅰ were markedly up-regulated, when compared with those without LY294002 treatment (P<0.05). Conclusion Inhibitory effect of VEGF on TGF-β1-induced EMT of HK2 ceils in vitro may be related to down-regulation of CTGF expression and reduction of FN and Col Ⅰ, which may be partly dependent on PI3K-Akt pathway.  相似文献   

10.
Objective To examine the relationship of the inhibitory effect of vascular endothelial growth factor(VEGF) on epithelial-mesenchymal transition (EMT) induced by TGF-β1 in HK2 cells with the expression of connective tissue growth factor (CTGF) and PI3K-Akt pathway. Methods The cultured HK2 cells were divided into the following groups: normal control group, TGF-β1 (5 μg/L) group, VEGF (100 μg/L) group, TGF-β1 plus VEGF group. LY294002 (25 μmol/L), the blocker of PI3K-Akt pathway, was added to each of above-mentioned groups for the second part of the study, α-smooth muscle actin (α-SMA) and E-cadherin expressions of HK2 cells were assessed with double-stain immunocytochemistry method. The mRNA and protein expressions of α-SMA and CTGF of cells were assessed with RT-PCR and Western blot. The expressions of fibronectin (FN) and collagen Ⅰ (Col Ⅰ) in medium were assessed with ELISA. Results The expressions of α-SMA and CTGF significantly increased in HK2 cells treated with TGF-β1 compared with those in normal control (P<0.05), while significantly decreased in cells co-treated with TGF-β1 and VEGF compared with those treated with TGF-β1 alone (P<0.05, respectively). The expression of E-cadherin was exactly opposite to that of α-SMA. When LY294002 was added to TGF-β1 and VEGF co-treated cells, the expressions of α-SMA, CTGF, FN and Col Ⅰ were markedly up-regulated, when compared with those without LY294002 treatment (P<0.05). Conclusion Inhibitory effect of VEGF on TGF-β1-induced EMT of HK2 ceils in vitro may be related to down-regulation of CTGF expression and reduction of FN and Col Ⅰ, which may be partly dependent on PI3K-Akt pathway.  相似文献   

11.
Objective To examine the relationship of the inhibitory effect of vascular endothelial growth factor(VEGF) on epithelial-mesenchymal transition (EMT) induced by TGF-β1 in HK2 cells with the expression of connective tissue growth factor (CTGF) and PI3K-Akt pathway. Methods The cultured HK2 cells were divided into the following groups: normal control group, TGF-β1 (5 μg/L) group, VEGF (100 μg/L) group, TGF-β1 plus VEGF group. LY294002 (25 μmol/L), the blocker of PI3K-Akt pathway, was added to each of above-mentioned groups for the second part of the study, α-smooth muscle actin (α-SMA) and E-cadherin expressions of HK2 cells were assessed with double-stain immunocytochemistry method. The mRNA and protein expressions of α-SMA and CTGF of cells were assessed with RT-PCR and Western blot. The expressions of fibronectin (FN) and collagen Ⅰ (Col Ⅰ) in medium were assessed with ELISA. Results The expressions of α-SMA and CTGF significantly increased in HK2 cells treated with TGF-β1 compared with those in normal control (P<0.05), while significantly decreased in cells co-treated with TGF-β1 and VEGF compared with those treated with TGF-β1 alone (P<0.05, respectively). The expression of E-cadherin was exactly opposite to that of α-SMA. When LY294002 was added to TGF-β1 and VEGF co-treated cells, the expressions of α-SMA, CTGF, FN and Col Ⅰ were markedly up-regulated, when compared with those without LY294002 treatment (P<0.05). Conclusion Inhibitory effect of VEGF on TGF-β1-induced EMT of HK2 ceils in vitro may be related to down-regulation of CTGF expression and reduction of FN and Col Ⅰ, which may be partly dependent on PI3K-Akt pathway.  相似文献   

12.
Objective To examine the relationship of the inhibitory effect of vascular endothelial growth factor(VEGF) on epithelial-mesenchymal transition (EMT) induced by TGF-β1 in HK2 cells with the expression of connective tissue growth factor (CTGF) and PI3K-Akt pathway. Methods The cultured HK2 cells were divided into the following groups: normal control group, TGF-β1 (5 μg/L) group, VEGF (100 μg/L) group, TGF-β1 plus VEGF group. LY294002 (25 μmol/L), the blocker of PI3K-Akt pathway, was added to each of above-mentioned groups for the second part of the study, α-smooth muscle actin (α-SMA) and E-cadherin expressions of HK2 cells were assessed with double-stain immunocytochemistry method. The mRNA and protein expressions of α-SMA and CTGF of cells were assessed with RT-PCR and Western blot. The expressions of fibronectin (FN) and collagen Ⅰ (Col Ⅰ) in medium were assessed with ELISA. Results The expressions of α-SMA and CTGF significantly increased in HK2 cells treated with TGF-β1 compared with those in normal control (P<0.05), while significantly decreased in cells co-treated with TGF-β1 and VEGF compared with those treated with TGF-β1 alone (P<0.05, respectively). The expression of E-cadherin was exactly opposite to that of α-SMA. When LY294002 was added to TGF-β1 and VEGF co-treated cells, the expressions of α-SMA, CTGF, FN and Col Ⅰ were markedly up-regulated, when compared with those without LY294002 treatment (P<0.05). Conclusion Inhibitory effect of VEGF on TGF-β1-induced EMT of HK2 ceils in vitro may be related to down-regulation of CTGF expression and reduction of FN and Col Ⅰ, which may be partly dependent on PI3K-Akt pathway.  相似文献   

13.
目的:探讨游离脂肪酸(FFAs)在肾小管间质纤维化中的作用.方法:以去脂牛血清白蛋白(d-BSA)为油酸(OA)载体,用不同浓度OA刺激培养肾小管上皮细胞(RTECs),以不加d-BSA及只加普通培养液的细胞作对照组,应用四甲基偶氮唑蓝(MTT)比色法检测RTECs增殖能力,反转录多聚酶链反应(RT-PCR)检测RTECs TGF-β1 mRNA的表达水平,酶联免疫吸附(ELISA)法检测培养上清TGF-β1水平.结果:d-BSA组与空白对照组RTECs的增殖、TGF-β1 mRNA表达及蛋白分泌比较无统计学差异(P>0.05),而不同浓度OA组与空白对照组比较有统计学差异(P<0.05),且随差OA浓度增加,对RTECs的增殖抑制以及对TGF-β1 mRNA表达及蛋白分泌的促进作用有增强趋势.结论:FFAs可能通过抑制RTECs的生长并促进其TGF-β1的表达和分泌从而在肾小管间质纤维化(RTF)的发生发展中起着一定的作用.  相似文献   

14.
目的:探讨游离脂肪酸(FFAs)在肾小管间质纤维化中的作用。方法:以去脂牛血清白蛋白(d-BSA)为油酸(OA)载体,用不同浓度OA刺激培养肾小管上皮细胞(RTECs),以不加d-BSA及只加普通培养液的细胞作对照组,应用四甲基偶氮唑蓝(MTT)比色法检测RTECs增殖能力,反转录多聚酶链反应(RT-PCR)检测RTECs TGF-β1mRNA的表达水平,酶联免疫吸附(ELISA)法检测培养上清TGF-β1水平。结果:d-BSA组与空白对照组RTECs的增殖、TGF-β1mRNA表达及蛋白分泌比较无统计学差异(P>0.05),而不同浓度OA组与空白对照组比较有统计学差异(P<0.05),且随差OA浓度增加,对RTECs的增殖抑制以及对TGF-β1mRNA表达及蛋白分泌的促进作用有增强趋势。结论:FFAs可能通过抑制RTECs的生长并促进其TGF-β1的表达和分泌从而在肾小管间质纤维化(RTF)的发生发展中起着一定的作用。  相似文献   

15.
转化生长因子-β_1诱导人肾小管上皮细胞增殖的实验研究   总被引:2,自引:0,他引:2  
目的:通过观察转化生长因子-β1(TGF-β1)对人肾小管上皮细胞(HK-2)增殖的影响,探讨TGF-β1在肾间质纤维化形成方面的作用。方法:将HK-2细胞用含10%胎牛血清的DMEM/F12(1∶1)培养基培养;实验分为空白对照组、TGF-β1诱导组(TGF-β11、3、5、8、10ng/ml)。在倒置显微镜下观察各组细胞形态的改变,并通过MTT法检测TGF-β1对细胞增殖的影响。结果:TGF-β1能显著诱导人肾小管上皮细胞增殖,刺激细胞纤维样改变,与空白对照组相比差异有统计学意义(P〈0.05),其作用随着药物浓度增大、处理时间延长而呈现一定的上升趋势。结论:TGF-β1能够诱导人肾小管上皮细胞增殖,具有促进肾间质纤维化形成的作用。  相似文献   

16.
目的 观察脂多糖(LPS)协同转化生长因子-β1 (TGF-β1)作用于乳腺癌MCF-7细胞的生物学效应,并探讨其分子生物学机制.方法 倒置显微镜下观察细胞形态;罗丹明-鬼笔环肽标记细胞骨架;实时定量聚合酶链反应(Real-time PCR)检测E-钙黏蛋白(E-cadherin)、波形蛋白(Vimentin)、转录因子Snail、Twist以及基质金属蛋白酶-9(MMP-9)的基因表达水平;Transwell小室检测迁移、侵袭能力;明胶酶谱检测活性蛋白MMP-9的表达水平;Western blot检测核因子(NF)-κB、细胞外信号调节激酶(ERK)和Smad信号通路.结果 LPS和TGF-β1联合组(联合刺激组)的细胞呈纺锤状,细胞骨架明显改变.联合刺激组E-cadherin显著下调,Vimentin、Snail-2、Twist、MMP-9 mRNA表达水平显著上调;对照组、LPS组、TGF-β1组、联合刺激组每个视野迁移细胞数分别为(6.8±4.1)、(10.2±4.3)、(39.5士3.8)、(69.7±4.4)个,每个视野侵袭细胞数分别为(4.4±1.1)、(6.8±2.4)、(32.1±2.3)、(54.9±4.5)个.联合刺激组活性MMP-9表达水平最高;联合刺激组磷酸化ERK和磷酸化Smad-2的水平要高于TGF-β1组.结论 LPS能够增强TCF-β1诱导乳腺癌MCF-7细胞发生上皮-间充质转化,并且两者联合作用能够促进MCF-7细胞发生侵袭迁移.  相似文献   

17.
[目的]探讨外源性血管内皮生长因子(VEGF)对人骨髓来源间充质干细胞(MSCs)增殖、向成软骨方向定向分化等生物学行为的影响及其机理,为MSCs构建组织工程化软骨奠定基础.[方法]取人骨髓来源间充质干细胞体外培养,将传代后的细胞分别置于含有800ng/ml和1600ng/ml VEGF的诱导培养基中进行培养,将具有促进细胞增殖分化及抑制多种炎性介质活性等多重生物学效应的TGF-β1以10ng/ml浓度配置无血清培养基诱导同组MSCs作阳性对照,观察细胞的增殖,分化。用Ⅱ型胶原免疫组化染色评价不同诱导因素下的软骨基质合成情况。[结果]所有细胞显示了良好的增殖能力,暴露于外源性血管内皮生长因子下的MSCs保持了良好的生长活性,并开始向软骨表型分化,与未添加诱导因子组细胞相比差异有显著性意义,不同浓度VEGF组的细胞合成软骨基质的能力无差异,但均不如阳性对照组。[结论]外源性VEGF具有诱导体外培养的人MSCs向软骨表型分化的能力,但与TGF-β1的诱导能力相比有差距。提示VEGF在MSCs来源的软骨修复过程中充当诱导信息提供者的角色。  相似文献   

18.
目的 探讨骨髓间充质干细胞(MSCs)移植联合血管内皮生长因子(VEGF)基因转染对大鼠梗塞心肌组织的修复重建、血管再生及梗塞后心功能的影响。方法 体外分离、培养、纯化SD大鼠的MSCs,以BrdU标记MSCs,腺病毒介导VEGF基因转染MSCs。建立大鼠急性心肌梗死模型4周后,随机分为4组(每组10只),分别行梗塞心肌内注射:转染VEGF基因的MSCs移植组(组Ⅰ)、单纯MSCs移植组(组Ⅱ)、单纯VEGF基因治疗组(组Ⅲ)和以注射无血清IMDM培养液为对照组(组Ⅳ)。移植4周后观察移植细胞的分化和新生血管的形成,并通过超声多普勒检测心功能变化。结果 组Ⅰ和组Ⅱ中,梗塞心肌处可见BrdU标记的移植细胞,cTnT染色阳性。超声心动图检查发现,组Ⅰ和组Ⅱ的左室射血分数(LVEF)的改善显著高于对照组(P均〈0.01),而组Ⅰ的LVEF改善程度要明显高于组Ⅱ;部分BrdU染色阳性的细胞可以分化成为内皮细胞,参与构成了梗塞区域的新生毛细血管。相对于对照组,组Ⅰ和组Ⅲ都有明显的血管新生(P均〈0.01)。结论 MSCs移植联合VEGF基因转染可以通过促进心肌再生和新生血管的形成来重建缺血心肌,显著改善心功能。  相似文献   

19.
细胞可塑性是机体多种生物学过程的基础。其中,上皮表型和间充质细胞表型的相互转化是不可忽视的生物学过程。间充质细胞向上皮细胞转化在胚胎发育早期阶段就已开始,并且参与了肾脏等多个器官的形成。此外,间充质上皮转化还参与了机体组织的损伤修复以及肿瘤的发生发展过程。研究表明,多种因素可以促进间充质-上皮转化进程,可能成为促进组织损伤修复和抑制肿瘤生长的治疗靶点。  相似文献   

20.
目的:探讨原代培养的大鼠肾小球系膜细胞血管内皮生长因子(vascular endothelial growth factor,VEGF)的表达及转化生长因子-β1(transforming growth factor-β1,TGF-β1)对其表达的影响。方法:采用RT-PCR和Westernblot方法检测大鼠原代培养的肾小球系膜细胞VEGF表达及不同浓度、不同时间的TGF-β1刺激对VEGF表达的作用。结果:原代培养的大鼠肾小球系膜细胞表达VEGF164、120mRNA,TGF-β1呈时间依赖性增加其表达,在12h表达最高,分别为刺激前3.17、2.925倍,有统计学差异(P〈0.001)。在剂量反应曲线上,2ng/ml TGF-β1刺激作用最强,VEGF164、120mRNA表达分别为未刺激组的2.82、2.45倍,有统计学差异(P〈0.001)。与VEGF mRNA表达一致,大鼠原代肾小球系膜细胞仅见VEGF164蛋白表达,2ng/ml TGF-β1呈时间依赖性的增加VEGF 164蛋白表达,24h达高峰,为刺激前的2.37倍。结论:促进肾小球系膜细胞VEGF表达可能是TGF-β1介导肾脏损害发生、发展的机制之一。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号