首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of inorganic selenium (Se) compounds (sodium selenite and selenate) on the activities of glutathione-related enzymes (glutathione peroxidase, glutathione-S-transferase [GST] and glutathione reductase [GR]) in pig blood platelets were investigated in vitro. GST activity in blood platelets treated with 10−4 M of selenite was reduced to 50%, whereas no decrease GST activity was observed after the treatment of platelets with the same dose of selenate. In platelets incubated with physiological doses (10−7, and 10−6 M) of Se compounds, the activity of glutathione peroxidase (GSH-Px) was enhanced (about 20%). GR activity after the exposure of platelets to tested Se compounds was unaffected.  相似文献   

2.
The activity of antioxidant and detoxifying enzymes, such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSHPx), glutathione reductase, glutathione-S-transferase (GST), the contents of thiobarbituric acid reactive substances, and the superoxide dismutase and glutathione-S-transferase isoenzyme patterns, were determined in the liver and kidney of pheasants after acute intoxication by herbicides MCPA and ANITEN I. In the liver, the activity of antioxidant enzymes was significantly decreased in the group given ANITEN I. New superoxide dismutase isoforms (pI 6.30, 6.85, 7.00) and higher intensity of isoform with pI 6.60 were observed after isoelectrofocusing in all experimental groups. In the kidney, the activity of superoxide dismutase was significantly decreased, and a higher intensity of superoxide dismutase isoforms (pI 6.00 and 6.60) was observed in all experimental groups. The contents of thiobarbituric acid reactive substances were significantly increased in the group with ANITEN I. The glutathione-S-transferase isoenzyme pattern was studied by using subunit-specific substrates and by Western blotting. The activity of glutathione-S-transferase with ethacrynic acid and cross-reactivity with rat subunit 7 was lower in all experimental groups in the kidney and liver, except in the liver of the group given a higher dose of ANITEN I. In this group, we have found a 2.10-fold higher activity to ethacrynic acid and a strong induction of subunit 7. © 1998 John Wiley & Sons, Inc. J Biochem Toxicol 12: 235–244, 1998  相似文献   

3.
The influence of insulin-dependent diabetes mellitus on the oxidative stress caused by cadmium in the liver and kidney of laboratory rats has been studied. The results suggest that cadmium and alloxan diabetes independently promote lipid peroxidation in both liver and kidney. However, lipid peroxidation diminished in the diabetic rats fed cadmium. Administration of cadmium to normal and diabetic rats depleted glutathione in liver only. No significant change was observed in the activity of glutathione peroxidase in kidney, whereas administration of cadmium to diabetic rats stimulated catalase activity when compared to cadmium-fed rats. The actual mechanism of these effects still remains to be confirmed, but an antagonistic relationship between cytotoxic mechanisms of diabetes mellitus and cadmium is speculated upon. The insulin-dependent activity of a unique form of cytochrome 450j may be involved.  相似文献   

4.
The black swallowtail butterfly larvae, Papilio polyxenes, are specialist feeders that have adapted to feeding on plants containing high levels of prooxidant allelochemicals. Third, fourth, and fifth instar larvae were tested for their antioxidant enzyme activities, superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), and glutathione peroxidase (GPOX), using 850-g supernatants from whole-body homogenates. The overall antioxidant enzyme profile for P. polyxenes was high compared to other insects, with activities ranging as follows: SOD, 1.1–7.5; CAT, 124–343; GR, 1.0–7.5; and GPOX, 0 units. To determine whether these antioxidant enzymes were inducible, P. poly xenes larvae were given a prooxidant challenge by dipping parsley leaves (their diet in the initial studies) in solutions of quercetin, such that the leaves became coated with this prooxidant flavonoid. Mid-fifth instar larvae fed on quercetin-coated leaves were assayed for antioxidant enzyme activities as was previously done with the larvae fed the standard diet. Food consumption and quercetin intake were monitored. SOD activity was increased almost twofold at the highest quercetin concentration tested. CAT and GR activity, on the other hand, were inhibited by increased quercetin consumption, with GR activity completely inhibited at the highest quercetin concentration after 12 h of feeding. GPOX activity, not present in control insects, was also not inducible by a quercetin challenge. These studies point out the key role that the antioxidant enzymes play in insect defenses against plant prooxidants.  相似文献   

5.
The black swallowtail butterfly, Papilio polyxenes, larvae are specialized feeders of pro-oxidant rich plants of Apiaceae and Rutaceae. An important defense against toxic forms of oxygen species generated by ingestion of the pro-oxidants, are the antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT), GSH-dependent glutathione peroxidases (selenium-dependent glutathione peroxidase [GPOX] and peroxidase activity of selenium-independent glutathione-S-transferase [GTpx]), and glutathione reductase (GR). The subcellular distribution of these enzymes in black swallowtail larvae was investigated and was found to resemble the patterns described for larvae of two other lepidopteran species: the southern armyworm, Spodoptera eridania, and the cabbage looper, Trichoplusia ni. The confinement of SOD in the cytosol and mitochondria was typically eukaryotic, but the relative proportion (1:1) was markedly different from the mammalian pattern (4:1; cytosol:mitochondria). The most obvious difference between the black swallowtail and other lepidoptera as a group, and mammalian species, is in very wide intracellular distributions of CAT, GTpx, and GR in insect species. Insects possess very low levels of a GPOX-like activity which reduces both H2O2 and organic peroxides. Consequently, insects have elaborate activities with a wide subcellular distribution of both CAT which decomposes H2O2, and GTpx which decomposes organic peroxides. The reduction of peroxides is dependent on GSH, which in this process is oxidized to GSSG. GR which reduces GSSG to GSH is also of wide subcellular distribution, analogous to the distribution pattern of GTpx.  相似文献   

6.
Total glutathione content, glutathione peroxidase, glutathione transferase and glutathione reductase activities have been measured in 12 species of yeasts. All the strains tested contained glutathione, though in different amounts, as well as the above mentioned enzymes. To discriminate between the selenium-dependent and the selenium-independent form, glutathione peroxidase activity has been measured with both H2O2 and cumene hydroperoxide. Rhodotorula glutinis appeared to be the only strain in which the selenium-dependent form was not found, but this yeast exhibited the highest level of selenium-independent glutathione peroxidase activity as compared to the other strains.  相似文献   

7.
We investigated the hypothesis that thallium (Tl) interactions with the glutathione-dependent antioxidant defence system could contribute to the oxidative stress associated with Tl toxicity. Working in vitro with reduced glutathione (GSH), glutathione reductase (GR) or glutathione peroxidase (GPx) in solution, we studied the effects of Tl+ and Tl3+ (1-25 μM) on: (a) the amount of free GSH, investigating whether the metal binds to GSH and/or oxidizes it; (b) the activity of the enzyme GR, that catalyzes GSH regeneration; and (c) the enzyme GPx, that reduces hydroperoxide at expense of GSH oxidation. We found that, while Tl+ had no effect on GSH concentration, Tl3+ oxidized it. Both cations inhibited the reduction of GSSG by GR and the diaphorase activity of this enzyme. In addition, Tl3+per se oxidized NADPH, the cofactor of GR. The effects of Tl on GPx activity depended on the metal charge: Tl+ inhibited GPx when cumene hydroperoxide (CuOOH) was the substrate, while Tl3+-mediated GPx inhibition occurred with both substrates. The present results show that Tl interacts with all the components of GSH/GSSG antioxidant defence system. Alterations of this protective pathway could be partially responsible for the oxidative stress associated with Tl toxicity.  相似文献   

8.
Antioxidant defenses in two wheat cultivars differing in sensitivity to dehydration (YouJian (YJ-24) more sensitive than LongChun (LC-20) were analyzed during water deficit and rewatering. Resistant cultivar (LC-20) showed a higher relative water content than the sensitive cultivar (YJ-24) during the whole period of water withholding. In order to analyze the changes of antioxidant enzymes, native PAGE analysis of protein extract were performed. Wheat leaves had two isoforms of Mn-superoxide dismutase (SOD), two isoforms of Cu/Zn-SOD and one of Fe-SOD. Three catalase (CAT) isoforms were identified in the leaves of wheat. The activities of SOD and CAT isoforms were increased in two cultivars under water deficit. The intensities of SOD and CAT isoforms were slightly lower in LC-20 and increased continuously in YJ-24 after rewatering. Peroxidase (POD) isoforms were significantly increased during the whole dehydration-rehydration period. Three ascorbate peroxidase (APX) isoforms were present in gel. APX-1 and APX-3 were enhanced during water deficit and decreased during rewatering in LC-20. In YJ-24 only the activities of APX-2 were increased under water deficit. Seven isoforms of glutathione reductase (GR) were detected in the native gel. Activities of most of GR isoforms were higher in tolerant (LC-20) than in sensitive cultivar (YJ-24). Different isoforms of GR in two wheat cultivars behaved differently under water deficit and rewatering. These results collectively suggest that water deficit activates the SOD, CAT and ascorbate-glutathione cycle in wheat leaves. The response of enzyme isoforms to drought is not the same for all isoforms of antioxidant enzymes in two wheat cultivars.  相似文献   

9.
Effect of cadmium on growth, antioxidative enzymes namely catalase, peroxidase, glutathione reductase, level of glutathione and phytochelatin synthesis was investigated in callus and seedlings of Cuscuta reflexa. A time, concentration and tissue dependent response of Cd was observed. Cd inhibited the growth of callus and seedlings by 50% at 300 and 500 micromol/L concentrations, respectively. Shorter exposure of low concentration of Cd led to augmentation of antioxidant activity, both in callus and seedlings, while longer exposure and high concentration of Cd led to a concentration dependent decrease in callus. Analysis of phytochelatin (PC) synthesis in callus and seedlings of C. reflexa revealed both quantitative and qualitative changes. Cd at low concentrations led to synthesis of predominantly PC4, while at higher concentrations, PC3 was the major form being synthesized. Amelioration of antioxidative systems of C. reflexa in response to Cd stress might be playing a protective role, alleviating the damaging effects of ROS, generated during Cd stress. Concomitantly, chelation and sequestering of toxic Cd ions in this parasite was mediated by synthesis of PC. The response to Cd stress shown by this holoparasitic plant was found to be similar to those of non-parasitic plants (hosts).  相似文献   

10.
In third-, fourth-, and fifth-instar larvae of the cabbage looper moth, Trichoplusia ni, the activities of the antioxidant enzymes, superoxide dismutase (SOD*), catalase (CAT), glutathione peroxidase (GPOX), and glutathione reductase (GR) were examined using 850 g supernatants of whole-body homogenates. The enzyme activities, expressed as units mg−1 protein min−1 at 25°C ranged as follows: SOD, 0.67-2.13 units; CAT, 180.5-307.5 units; GPOX, none detectable; and GR, 0.40-1.19 units. There was a similar pattern of changes for SOD and CAT activities with larval ontogeny, but not for GR. The cabbage looper apparently uses SOD and CAT to form a “defensive team” effective against endogenously produced superoxide anion (O2⪸). Glutathione may serve as an antioxidant for the destruction of any organic/lipid peroxides formed, and GSH oxidized to glutathione disulfide would be recycled by GR. Bioassays against pro-oxidant compounds exogenous sources of (O2⪸) show high sensitivity of mid-fifth instars to the linear furanocoumarin, 8-methoxypsoralen (xanthotoxin) primarily from photoactivation (320-380 nm), and auto-oxidation of the flavonoid, quercetin. The LC50s are 0.0004 and 0.0045% (w/w) concentration of xanthotoxin and quercetin, respectively. Both pro-oxidants have multiple target sites for lethal action and, in this context, the role of antioxidant enzymes is discussed.  相似文献   

11.
Effects of two biosynthetically distinct plant phototoxins—xanthototoxin, a furanocoumarin, and harmine, a β-carboline alkaloid, which are known to produce toxic oxygen species—on the food utilization efficiencies and enzymatic detoxification systems of the polyphagous cabbage looper. Trichoplusia ni (Lepidoptera: Noctuidae), were studied. Newly molted fifth-instar larvae were allowed 36 h to ingest diets containing these two phototoxins at 0.15% wet weight in the presence of near ultraviolet (UVA). The growth and development of the larvae, as well as the corresponding activities of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPOX), and glutathione reductase (GR) and the detoxification enzyme cytochrome P-450, were measured. Xanthotoxin reduced rates of relative growth and consumption and efficiencies of conversion of ingested and digested food to biomass. Harmine reduced rates of growth and consumption without affecting efficiencies of conversion. Specific activities of SOD, CAT, GPOX, and GR of whole-body homogenates in the absence of compounds were 0.88 units, 153μmol H2O2 decomposed·mg protein?1·min—1, 38.3 nmol NADPH oxidized·mg protein?1·min?1, and 0.56 nmol NADPH oxidized·mg protein?1·min?1, respectively. SOD activity was induced 2.9-fold and 3.8-fold by dietary xanthotoxin and harmine, respectively. CAT and GPOX activities were induced 1.2-fold by harmine only, and GR activity was not changed by either chemical. The P-450 activity toward xanthotoxin in the microsomal fraction of midguts was low (0.15 nmol xanthotoxin metabolized·mg protein?1·min?1) and was not induced by xanthotoxin ingestion. These studies indicate that P-450 and antioxidant enzyme systems may be independent but consequential, the induction of antioxidant enzymes by phototoxins occurring when low P-450 activity toward the phototoxin permits the accumulation of oxidative stress from unmetabolized phototoxin, which in turn induces antioxidant enzymes.  相似文献   

12.
Many secondary plant compounds are capable of photoactivation resulting in the production of toxic species of oxygen. One mechanism of defense for insects feeding on phototoxic plants may be the presence of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPOX), and glutathione reductase (GR). The activities of these enzymes were examined in larvae of three lepidoptera: Ostrinia nubilalis, Manduca sexta, and Anaitis plagiata. Highest levels of antioxidant enzyme activity were found in A. plagiata, a specialist feeder on Hypericum perforatum, which contains high levels of the phototoxin hypericin. Larvae of A. plagiata fed leaf discs treated with hypericin exhibited a short-term, concentration-dependent decline in enzyme activity. Longer term studies with A. palgiata fed either the photoxic H. perforatum, or the closely related but non-phototoxic H. calycinum, resulted in increased CAT and GR activity in larvae fed the phototoxic plant whereas SOD activity was not significantly different. These results suggest that CAT and GR may be inducible defenses against phototoxins.  相似文献   

13.
测定了用亚硒酸钠诱发的大鼠白内障晶状体中谷胱甘肽过氧化物酶(GSH-Px)、谷胱甘肽还原酶(GSSG-R)和谷胱甘肽硫转移酶(GSH-S)的活性,并与正常晶休中这三种酶的活性作了比较。结果表明,核浊浑期晶状体中GSH-Px的活性比正常晶状体的高一倍,但在整个晶状体浑浊时降低,GSSG-R的活性变化与GSH-PX相似,这两种酶在代谢上是相关的。GSH-S的活性在核浑浊期不改变,但在完全浑浊后降低。  相似文献   

14.
Previously the authors have designed and synthesized a library of antioxidative glutathione analogues called UPF peptides which are superior to glutathione in hydroxyl radical elimination. This paper is a follow-up study which investigated the effects of the most promising members of the library (UPF1 and UPF17) on oxidative stress-related enzymes. At concentrations used in vivo experiments neither UPF peptide influenced the activity of glutathione peroxidase (GPx) when purified enzyme or erythrocyte lysate was used. At higher concentrations they inhibited GPx activity. UPF peptides had no effect on glutathione reductase (GR) activity. Also they, as well as glutathione itself, slightly increased MnSOD activity in human brain mitochondria and inhibited oxidative burst caused by neutrophil NAD(P)H oxidase. RT-PCR measurements showed that UPF1 and UPF17 have no effect on GPx and MnSOD expression level in human blood mononuclear cells. The results of this study confirm that investigated UPF peptides do not interfere with the enzymatic mechanisms of antioxidative defence and can be used as themselves or as a lead for the protector molecule design against excessive oxidative stress.  相似文献   

15.
Paclobutrazol (PBZ)- and uniconazole (UCZ)-treated plants of Echinochloa frumentacea were shorter but had much wider leaves than untreated controls 10 days after treatment. Leaves of treated plants had a slightly higher concentration of soluble protein than the controls and exhibited enhanced activities of ascorbate peroxidase, monodehydroascorbate (MDHA) reductase, and glutathione (GSH) reductase. The triazoles did not influence the activity of dehydroascorbate (DHA) reductase. The leaves of treated plants had increased concentrations of water-soluble sulfhydryls and ascorbic acid. In contrast, the concentration of malondialdehyde (MDA), a by-product of lipid peroxidation, was lower in the leaves of treated plants than in controls. These results suggest that triazole growth regulators increased the activity of the endogenous H2O2-scavenging system in E. frumentacea.  相似文献   

16.
To discriminate among possible mechanisms responsible for the differential response to cold temperatures among ecotypes of the C4 grass weed species Echinochloa crus-galli (L.) Beauv., the specific activities of five oxygen-scavenging enzymes responsible for the elimination or reduction of free radicals and hydrogen peroxide during cold-induced photoinhibition were determined in 5-week-old plants of two populations of the species collected from sites of contrasting climates, Québec (QUE) and Mississippi (MISS). Enzyme activities were measured at temperatures ranging from 5 to 30°C. The specific activities of ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase and glutathione reductase were significantly higher in cold-adapted QUE plants at low assay temperatures than in warm-adapted MISS plants at the same temperature. The specific activities of superoxide dismutase assayed at 5 and 25°C were similar among plants of the two E. crus-galli populations. Ascorbate concentrations were not different among plants of the two populations, suggesting that the observed differences in the specific activities of ascorbate peroxidase assayed at 5°C, truly reflect a better capacity of the QUE enzyme to reduce H2O2 to water at temperature conditions associated with the photoinhibitory process. The enhanced specific activity of four of the five oxygen-scavenging enzymes measured in the cold-adapted QUE population at low assay temperatures correlates with the syndrome of cold-adapted features reported for plants of this population in earlier studies.  相似文献   

17.
In a previous work, it was shown that in cells after a decrease of cellular glutathione content, toxic zinc effects, such as protein synthesis inhibition or GSSG (glutathione, oxidized form) increases, were enhanced. In this study, zinc toxicity was determined by detection of methionine incorporation as a parameter of protein synthesis and GSSG increase in various lung cell lines (A549, L2, 11Lu, 16Lu), dependent on enhanced GSSG reductase activities and changed glutathione contents. After pretreatment of cells with dl-buthionine-[R,S]-sulfoximine (BSO) for 72 h, cellular glutathione contents were decreased to 15–40% and GSSG reductase activity was increased to 120–135% in a concentration-dependent manner. In BSO pretreated cells, the IC50 values of zinc for methionine incorporation inhibition were unchanged as compared to cells not pretreated. The GSSG increase in BSO pretreated cells by zinc was enhanced in L2, 11Lu, and 16Lu cells, whereas in A549 cells, the GSSG increase by zinc was enhanced only after pretreatment with the highest BSO concentration. Inhibition of GSSG reductase in alveolar epithelial cells was observed at lower zinc concentrations than needed for methionine incorporation inhibition, whereas in fibroblastlike cells, inhibition of GSSG reductase occurred at markedly higher zinc concentrations as compared to methionine incorporation inhibition. These results demonstrate that GSSG reductase is an important factor in cellular zinc susceptibility. We conclude that reduction of GSSG is reduced in zinc-exposed cells. Therefore, protection of GSH oxidation by various antioxidants as well as enhancement of GSH content are expected to be mechanisms of diminishing toxic cellular effects after exposure to zinc.  相似文献   

18.
Cytokinin (CK) content and activities of several antioxidant enzymes were examined during plant ontogeny with the aim to elucidate their role in delayed senescence of transgenic Pssu-ipt tobacco. Control Nicotiana tabacum L. (cv. Petit Havana SR1) and transgenic tobacco with the ipt gene under the control of the promoter of small subunit of Rubisco (Pssu-ipt) were both grown either as grafts on control rootstocks or as rooted plants. Both control plant types showed a decline in total content of CKs with proceeding plant senescence. Contrary to this both transgenic plant types exhibited at least ten times higher content of CKs than controls and a significant increase of CK contents throughout the ontogeny with maximal values in the later stages of plant development. Significantly higher portion of O-glucosides was found in both transgenic plant types compared to control ones. In transgenic plants, zeatin and zeatin riboside were predominant type of CKs. Generally, Pssu-ipt tobacco exhibited elevated activities of antioxidant enzymes compared to control tobacco particularly in the later stages of plant development. While in control tobacco activity of glutathione reductase (GR) and superoxide dismutase (SOD) showed increasing activity up to the onset of flowering and then gradually decreased, in both transgenic types GR increased and SOD activity showed only small change throughout the plant ontogeny. Ascorbate peroxidase (APOD) was stimulated in both transgenic types. The manifold enhancement of syringaldazine and guaiacol peroxidase activities was observed in transgenic grafts throughout plant ontogeny in contrast to control and transgenic rooted plants, where the increase was found only in the late stages. Electron microscopic examination showed higher number of crystallic cores in peroxisomes and abnormal interactions among organelles in transgenic tobacco in comparison with control plant. The overproduction of cytokinins resulted in the stimulation of activities of AOE throughout the plant ontogeny of transgenic Pssu-ipt tobacco.  相似文献   

19.
20.
《Free radical research》2013,47(5):585-599
Abstract

Abstract Biological treatment of psoriasis, a chronic inflammatory immune-mediated pathology of huge social impact, has become a recent revolutionizing breakthrough in the management of the disease. Apart from anti-TNF-alpha biologics, recombinant proteins-inhibitors of the T lymphocytes-antigen presenting cells interaction, Efalizumab among them, have been successfully used in the therapy of psoriasis. Serious concern regarding safety and efficacy of biologics remains because they induce numerous adverse effects and a significant number of patients are non-responders. Up-to-now, there are no biochemical or/and immunological markers of the clinical efficacy of these drugs. This study searches for immunological and redox markers of the clinical response in the group of psoriatic patients treated with Efalizumab. Clinical response to Efalizumab was assessed by Psoriasis Area and Severity Index and correlated with suppression of T-cell functions, plasma cytokines, membrane-associated polyunsaturated fatty acids (PUFAs), antioxidant enzymes and markers of oxidative stress. A 12-week Efalizumab therapy did not affect abnormal plasma levels of pro-inflammatory cytokines and lower-than-normal content of PUFAs esterified in phospholipids of red cell membranes. It did, however, suppress T-cell-mediated functions and decrease nitrites/nitrates and malonyl dialdehyde levels independently on the clinical outcome. On contrast, activities of glutathione peroxidase (GPx) and glutathione S-transferase in granulocytes were remarkably increased and catalase decreased exclusively in non-responders vs complete or partial responders. High baseline GPx in erythrocytes decreased in responders. It is concluded that clinical response to Efalizumab correlates with GPx activity in the blood cells, suggesting that high hydroperoxide levels are involved in psoriasis persistence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号