首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents a network-based analysis approach for the reconfiguration problem of a self-reconfigurable robot. The self-reconfigurable modular robot named "AMOEBA-I" has nine kinds of non-isomorphic configurations that consist of a configuration network. Each configuration of the robot is defined to be a node in the weighted and directed configuration network. The transformation from one configuration to another is represented by a directed path with nonnegative weight. Graph theory is applied in the reconfiguration analysis, where reconfiguration route, reconfigurable matrix and route matrix are defined according to the topological information of these configurations. Algorithms in graph theory have been used in enumerating the available reconfiguration routes and deciding the best reconfiguration route. Numerical analysis and experimental simulation results prove the validity of the approach proposed in this paper. And it is potentially suitable for other self-reconfigurable robots' configuration control and reconfiguration planning.  相似文献   

2.
Kinematic Design of Modular Reconfigurable In-Parallel Robots   总被引:1,自引:0,他引:1  
This paper describes the kinematic design issues of a modular reconfigurable parallel robot. Two types of robot modules, the fixed-dimension joint modules and the variable dimension link modules that can be custom-designed rapidly, are used to facilitate the complex design effort. Module selection and robot configuration enumeration are discussed. The kinematic analysis of modular parallel robots is based on a local frame representation of the Product-Of-Exponentials (POE) formula. Forward displacement analysis algorithms and a workspace visualization scheme are presented for a class of three-legged modular parallel robots. Two three-legged reconfigurable parallel robot configurations are actually built according to the proposed design procedure.  相似文献   

3.
模块化可重构机器人由于其构型多变,运动形式丰富等特点,可以在非结构化环境或未知环境中执行任务,在最近几年迅速成为机器人研究领域的前沿和热点. 模块化可重构机器人在军事、医疗、教育等众多工程领域具有广泛的应用前景,其典型代表包括仿生多足模块化机器人、模块化可重构机械臂、晶格式模块化机器人等. 模块化可重构机器人丰富的构型设计、多样的连接特征、不断拓展的应用范围,给动力学建模与控制带来了很多挑战和机遇. 本文首先阐述了模块化可重构机器人的研究背景和意义,并概述了其构型分类与设计、构型描述与运动学建模方法.随后,本文系统回顾了模块化可重构机器人动力学研究中相关问题的最新进展,包括:(1)系统整体动力学建模;(2)结合面以及对接机构动力学建模;(3)基于动力学模型的控制方法. 本文最后提出了模块化可重构机器人动力学研究中若干值得关注的问题.  相似文献   

4.
可重构模块化机器人现状和发展   总被引:22,自引:1,他引:21  
刘明尧  谈大龙  李斌 《机器人》2001,23(3):275-279
由于市场全球化的竞争,机器人的应用范围要求越来越广,而每种机器人的构形仅能 适应一定的有限范围,因此机器人的柔性不能满足市场变化的要求,解决这一问题的方法就 是开发可重构机器人系统.本文介绍了可重构机器人的发展状况,分析了可重构机器人的研 究内容和发展方向.  相似文献   

5.
模块化机器人拓扑重构规划研究   总被引:1,自引:0,他引:1  
模块化可重构机器人由若干个相同的机器人模块组合装配而成,能够重构成不同的几何形态和结构,从而适应不同的作业任务要求。本论文主要对树状拓扑结构的模块化机器人的重构规划问题进行了研究,定义了构型重构的基本概念,提出了分支重构规划算法。这类模块化可重构机器人可以用树状拓扑结构图来描述。机器人的拓扑结构从自由树转化为有根树,然后分解为若干个分支结构,并按一定顺序排列,通过对各个分支结构的逐步比较和操作,完成重构过程。最后选定模块数目,进行了重构规划过程的仿真计算。结果表明,文中所述算法对于树状拓扑结构的模块化机器人的重构规划问题是有效的。  相似文献   

6.
This article describes the development of a component-based technology robot workcell that can be rapidly configured to perform a specific manufacturing task. The workcell is conceived with standard and inter-operable components including actuator modules, rigid link connectors and tools that can be assembled into robots with arbitrary geometry and degrees of freedom. The reconfigurable “plug-and-play” robot kinematic and dynamic modeling algorithms are developed. These algorithms are the basis for the control and simulation of reconfigurable robots. The concept of robot configuration optimization is introduced for the effective use of the rapidly reconfigurable robots. Control and communications of the workcell components are facilitated by a workcell-wide TCP/IP network and device-level CAN-bus networks. An object-oriented simulation and visualization software for the reconfigurable robot is developed based on Windows NT. Prototypes of the robot workcells configured to perform the light-machining task and the positioning task are constructed and demonstrated.  相似文献   

7.
The inverse kinematics solutions of a reconfigurable robot system built upon a collection of standardized components is difficult to obtain because of its varying configurations. This article addresses the formulation of a generic numerical inverse kinematics model and automatic generation of the model for arbitrary robot geometry including serial and tree‐typed geometries. Both revolute and prismatic types of joints are considered. The inverse kinematics is obtained through the differential kinematics equations based on the product‐of‐exponential (POE) formulas. The Newton–Raphson iteration method is employed for solution. The automated model generation is accomplished by using the kinematic graph representation of a modular robot assembly configuration and the related accessibility matrix and path matrix. Examples of the inverse kinematics solutions for different types of modular robots are given to demonstrate the applicability and effectiveness of the proposed algorithm. ©1999 John Wiley & Sons, Inc.  相似文献   

8.
Modular robots can be defined as reconfigurable mechanical arms which can be automatically controlled using suitable motion control software. In this article, a generalized kinematic modeling method is presented for such modular robots. This method can be used to derive the individual kinematic models of all the mechanical elements that make up the inventory of modular units, independently of their geometry and sequence of assembly into a robot. A general procedure is also presented to derive a global kinematic model of any robot configured using these modular units. The kinematic modeling technique of the units is based on Denavit-Hartenberg (D-H) parameter notation. A provision is also presented for converting “non D-H” parameter transformations, obtained in assembling the kinematic chain, into D-H transformations. This D-H conversion feature allows the modeling technique to preserve its generality when a kinematic model is obtained for the specific robot configuration at hand. The conceptual design of modular robot units that is under development in the Computer Integrated Manufacturing Laboratory (CIML) is also presented to show the feasibility of a modular approach to robot design and to clarify some of the mathematical for mulations developed in the article.  相似文献   

9.
Reconfigurable Manipulators are structurally redundant robots that utilize a subset of their joints to perform a specific task optimally. This paper presents a method of finding a task-based optimal configuration for a new type of reconfigurable robot manipulator, called the modular autonomously reconfigurable serial (MARS) manipulator. The reconfiguration optimization treats the joint space of the MARS manipulator as a 12-dimensional smooth configuration manifold. The manifold is discretized and ranked based on a variety of criteria, and then clustered into attractive and repellent regions. The user then specifies which regions are desired in the target configuration, and the manifold is reduced in dimension in order to maximize the number of attractive regions and minimize the number of repellent regions. Six manipulator configurations are synthesized using this approach, and their effectiveness is compared.  相似文献   

10.
Dual-arm reconfigurable robot is a new type of robot. It can adapt to different tasks by changing its different end-effector modules which have standard connectors. Especially, in fast and flexible assembly, it is very important to research the collision-free planning of dual-arm reconfigurable robots. It is to find a continuous, collision-free path in an environment containing obstacles. A new approach to the real-time collision-free motion planning of dual-arm reconfigurable robots is used in the paper. This method is based on configuration space (C-Space). The method of configuration space and the concepts reachable manifold and contact manifold are successfully applied to the collision-free motion planning of dual-arm robot. The complexity of dual-arm robots’ collision-free planning will reduce to a search in a dispersed C-Space. With this algorithm, a real-time optimum path is found. And when the start point and the end point of the dual-arm robot are specified, the algorithm will successfully get the collision-free path real time. A verification of this algorithm is made in the dual-arm horizontal articulated robot SCARATES, and the simulation and experiment ascertain that the algorithm is feasible and effective.  相似文献   

11.
为提升移动机器人对环境的适应能力,提出了一种适用于车体构形、轮距和轮向可变的轮式移动机器人的构形评价、优选和变换规划方法。该方法以转弯所需半径、通过宽度和稳定角为指标评价不同构形下机器人的移动性和稳定性,然后构建权系数多目标模型从构形集合中优选与环境特征匹配的构形,再将任意两构形之间的变换规划转化为网络路径搜索问题来求解耗能最少的变换路径。最后,通过实验验证了所提评价指标、构形优选以及变换路径规划方法的合理性和有效性。研究结果可为此类构形可变轮式移动机器人的设计分析和运动规划提供指导或参考。  相似文献   

12.
Modular Reconfigurable Robots in Space Applications   总被引:6,自引:0,他引:6  
Robots used for tasks in space have strict requirements. Modular reconfigurable robots have a variety of attributes that are well suited to these conditions, including: serving as many different tools at once (saving weight), packing into compressed forms (saving space) and having high levels of redundancy (increasing robustness). In addition, self-reconfigurable systems can self-repair and adapt to changing or unanticipated conditions. This paper will describe such a self-reconfigurable modular robot: PolyBot. PolyBot has significant potential in the space manipulation and surface mobility class of applications for space.  相似文献   

13.
Single module of the reconfigurable robots with independent manipulation can perform the actions of locomotion and manipulation. In conformity with the request for achieving autonomous operation in the unstructurized environment instead of fixed operation in the structurized environment, these robots are applied in the complicated and dangerous environment. The existing researches on the configuration theory focus on the reconfigurable robots with limited locomotion and the ones with independent locomotion, not being applicable to the reconfigurable robots with independent manipulation. The vector configuration is put forward, the research content of which contains the topology and locomotion direction of configuration, the posture and orientation and connection relation between modules. Module state vector and configuration state matrix are proposed for representation methodology for the swarm configuration of these reconfigurable robots, which supports transformation operation to represent and trigger behavior motion of the module and reconfiguration between configurations. Optimization algorithm of assembly reconfiguration applying workload as the optimization target is presented, as well as optimization algorithm of transformation reconfiguration applying the integration of posture orientation workload and connection workload. The result of optimization is the relation of state transformation between the initial configuration and the object one as the basic of reconfiguration plan and control. Supported by the National High-Tech Research and Development Program of China (Grant No. 2006AA04Z254) and the Scientific Research Fund for Doctor of Liaoning Provice (Grant No. 20071007)  相似文献   

14.
自重构机器人的自组织变形   总被引:3,自引:0,他引:3  
本文深入研究了自重构机器人实现自组织变形的基本方法.首先根据自重构机器人 系统结构的基本特征提出一种描述模型,可以对各类模块化自重构机器人的拓扑结构进行统 一描述.然后提出一种建立在全离散的局部智能基础上的自重构机器人的自组织变形策略, 通过建立适当的模块运动规则和规则进化使机器人由局部自主运动产生全局系统自组织的结 果.  相似文献   

15.
We consider the problem of gathering identical, memoryless, mobile robots in one node of an anonymous unoriented ring. Robots start from different nodes of the ring. They operate in Look–Compute–Move cycles and have to end up in the same node. In one cycle, a robot takes a snapshot of the current configuration (Look), makes a decision to stay idle or to move to one of its adjacent nodes (Compute), and in the latter case makes an instantaneous move to this neighbor (Move). Cycles are performed asynchronously for each robot. For an odd number of robots we prove that gathering is feasible if and only if the initial configuration is not periodic, and we provide a gathering algorithm for any such configuration. For an even number of robots we decide the feasibility of gathering except for one type of symmetric initial configurations, and provide gathering algorithms for initial configurations proved to be gatherable.  相似文献   

16.
可重构模块机器人倾翻稳定性研究   总被引:4,自引:2,他引:2  
李斌  刘金国  谈大龙 《机器人》2005,27(3):241-246
介绍了一种可重构模块机器人,它可以通过构形的变化来提高系统的稳定性和抗倾翻能力.该机器人由3个模块组成,采用履带驱动,具有直线、三角、并排3种对称构形.在对移动机器人的倾翻因素和倾翻对策等问题进行分析的基础上,提出稳定锥方法,用倾翻性能指数对移动机器人的静、动态稳定性进行综合判定. 讨论了变形机器人3种对称构形在仰俯、偏转、倾斜等干扰组合作用下的倾翻性能指数和综合稳定性,并进行了仿真实验和非结构环境实验.  相似文献   

17.
This paper presents a new conceptual design for reconfigurable robots. Unlike conventional reconfigurable robots, our design does not achieve reconfigurability by utilizing modular joints. Rather, the robot is equipped with passive joints, i.e., joints without actuator or sensor, which permit changing the Denavit–Hartenberg (DH) parameters such as the link length and twist angle. The passive joints will become controllable when the robot forms a closed kinematic chain. Also, each passive joint is equipped with a built-in brake mechanism that is normally locked, but the lock can be released whenever the parameters are to be changed. Such a versatile and agile robot is particularly suitable for space application for its simple, compact, and light design. The kinematics and recalibration of this kind of reconfigurable robot are thoroughly analyzed. A stable reconfiguration-control algorithm is devised to take the robot from one configuration to another by directly regulating the passive joints to the associated, desired DH parameters. Conditions for the observability and the controllability of the passive joints are also derived in detail.   相似文献   

18.
The redundant robots analyzed here have large numbers of degrees of freedom. Such robots are analogous to snake or tentacles and are useful for operation in highly constrained environments and novel forms of locomotion — here it has been defined as critical manipulation. In this paper the end-point deflection of hyper-redundant robots have been studied by parameterization of the flexible links of the robot manipulator. A number of planar configurations of the redundant manipulator were taken into consideration for the present study and the configuration which gives minimum end-point deflection has been recommended for the critical manipulation. This work is significant for some of the research activities recently going on in NASA's Kennedy Space Center towards the application of hyper-redundant robots for manipulation inside the space Shuttle Cargo Bay.  相似文献   

19.
Wan Ding 《Advanced Robotics》2014,28(22):1487-1505
This paper presents the construction and locomotion analysis of the modular robots composed of expandable cubes (E-Cubes). The kinematic properties and experiment research of the assembled modular robots are the main focus of the paper. The E-Cube consisted of only prismatic joints is a cubic module with three degrees of freedom corresponding to three mutually perpendicular directions. The modular robots are constructed by connecting the vertex or edge of the adjacent modules. In this paper, first, the modular robot system including the E-Cube hardware, connection method of modules and a potential binary control strategy is described. And then, the detailed kinematics, stability and motion simulations of three configurations assembled with four modules are analysed. After that, a set of experimental pneumatic-based robotic system is built. At last, the gait experiments of the configurations are carried out to testify the feasibility and validity of design and locomotion functions. The experiment results show the reliability of the mechanical, control and pneumatic systems and the programming and control efficiency of the binary control strategy. As extension, a modular robot with eight modules is assembled, and its different locomotion gaits are simulated accordingly.  相似文献   

20.
Composed of multiple modular robotic units, self-reconfigurable modular robots are metamorphic systems that can autonomously rearrange the modules and form different configurations depending on dynamic environments and tasks. The goal of self-reconfiguration is to determine how to change connectivity of modules to transform the robot from the current configuration to the goal configuration subject to restrictions of physical implementation. The existing reconfiguration algorithms use different methods, such as divide-and-conquer, graph matching, and the like, to reduce the reconfiguration cost. However, an optimal solution with a minimal number of reconfiguration steps has not been found yet. The optimal reconfiguration planning problem consists in finding the least number of reconfiguration steps transforming the robot from one configuration to another. This is an NP-complete problem. In this paper, we describe an approach to solve this problem. The approach is based on constructing logical models of the problem under study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号