首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: We have previously shown that isolated allergic sensitization and challenge of the upper airway results in lower-airway inflammation, which supports the concept of the united airways. OBJECTIVE: This study investigates the hypothesis that isolated upper-airway allergic sensitization is sufficient to induce bronchial hyper-responsiveness (BHR), characteristic of asthma, and that IL-13 is an essential mediator in both the upper and lower airways. METHODS: BALB/c mice were sensitized and challenged by intranasal instillation of allergen ovalbumin (OVA) using our standard protocol. BHR to methacholine was determined and inflammation in nares and lung was assessed. RESULTS: Isolated intranasal application of allergen in awake animals resulted in almost exclusive deposition in the upper airways while in anaesthetized mice there was almost equal distribution in the upper and lower airways. We have demonstrated significant BHR to methacholine challenge in animals receiving OVA only in the upper airway. Also noted was concomitant increase in eosinophilic infiltrates in lung and nares as well as increased granulocytes and IL-13 levels in bronchoalveolar lavage (BAL) fluid. Using a polyclonal anti-IL-13 antibody we have shown inhibition of airways inflammation, both in nares and in lung with significant reduction of granulocytes in BAL from anti-IL-13 treated mice (P<0.0001). Anti-IL-13 treatment also abrogates allergen-induced BHR (P<0.01). CONCLUSION: These data suggest that isolated upper-airway allergen deposition initiates allergic responses along the entire airway. IL-13 mediates both airway inflammation and BHR and may play a role in the communication between the upper and lower airways.  相似文献   

2.
BACKGROUND: Invariant T-cell receptor-positive natural killer (iNKT) cells have been shown to be essential for the development of allergen-induced airway hyperreactivity (AHR). OBJECTIVE: We examined the role of iNKT cells in allergic skin inflammation using a murine model of atopic dermatitis (AD) elicited by epicutaneous sensitization with ovalbumin (OVA). METHODS: Wild-type (WT) and natural killer T-cell-deficient CD1d-/- mice were epicutaneously sensitized with OVA or normal saline and challenged with aerosolized OVA. iNKT cells in skin and bronchoalveolar lavage fluid were analyzed by fluorescence-activated cell sorting, and cytokine mRNA levels were measured by quantitative RT-PCR. AHR to methacholine was measured after OVA inhalation. RESULTS: Skin infiltration by eosinophils and CD4+ cells and expression of mRNA encoding IL-4 and IL-13 in OVA-sensitized skin were similar in WT and CD1d-/- mice. No significant increase in iNKT cells was detectable in epicutaneously sensitized skin. In contrast, iNKT cells were found in the bronchoalveolar lavage fluid from OVA-challenged epicutaneously sensitized WT mice, but not CD1d-/- mice. Epicutaneously sensitized CD1d-/- mice had an impaired expression of IL-4, IL-5, and IL-13 mRNA in the lung and failed to develop AHR in response to airway challenge with OVA. CONCLUSION: These results demonstrate that iNKT cells are not required for allergic skin inflammation in a murine model of AD, in contrast with airway inflammation, in which iNKT cells are essential. CLINICAL IMPLICATIONS: Understanding the potential role of iNKT cells in AD will allow us to have a more specific target for therapeutic use.  相似文献   

3.
Severe respiratory syncytial virus (RSV)-induced disease is associated with childhood asthma and atopy. We combined models of allergen sensitization and RSV infection to begin exploring the immunologic interactions between allergic and virus-induced airway inflammation and its impact on airway hypersensitivity. Airway resistance was measured after methacholine challenge in tracheally intubated mice by whole body plethysmography. Lung inflammation was assessed by bronchoalveolar lavage (BAL) and histopathology. RSV infection alone did not cause significant airway hyperresponsiveness (AHR) to methacholine. Ovalbumin (OVA)-induced AHR lasted only a few days past the discontinuance of OVA aerosol in mice that were ovalbumin sensitized and mock infected. In contrast, OVA-sensitized mice infected with RSV during the OVA aerosol treatments (OVA/RSV) had AHR for more than 2 weeks after infection. However, 2 weeks after either RSV or mock infection, OVA/RSV mice had significantly more lymphocytes found during BAL than OVA mice, whereas the OVA and OVA/RSV groups had the same number of eosinophils. Histopathologic analysis confirmed an increased inflammation in the lungs of OVA/RSV mice compared with OVA mice. In addition, OVA/RSV mice had a more widespread distribution of mucus in their airways with increased amounts of intraluminal mucus pools compared with the other groups. Thus, prolonged AHR in RSV-infected mice during ovalbumin-sensitization correlates with increased numbers of lymphocytes in BAL fluid, increased lung inflammation, and mucus deposition in the airways, but not with airway eosinophilia. A further understanding of the immunologic consequences of combined allergic and virus-induced airway inflammation will impact the management of diseases associated with airway hyperreactivity. J. Med. Virol. 57:186–192, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

4.
BACKGROUND: Contact with immunomodulatory factors, such as LPS, in early infancy is associated with decreased allergen sensitization. OBJECTIVE: We sought to study the effects of systemic or airway exposure with LPS on the development of allergen sensitization, eosinophilic airway inflammation, and increased in vivo airway reactivity (AR) in a mouse model. METHODS: BALB/c mice were systemically sensitized with ovalbumin (OVA) plus adjuvant on days 1 and 14 and challenged through the airways with allergen on days 34 to 36. We performed measurement of OVA-specific IgE serum levels, in vitro T(H)2 cytokine production, differential cell counts in bronchoalveolar lavage fluids, and assessment of in vivo AR to inhaled methacholine by means of barometric whole-body plethysmography. RESULTS: Systemic LPS administration before OVA sensitization reduced OVA-specific IgE serum levels (426 +/- 76 vs 880 +/- 104 U/mL, P <.01), T(H)2 cytokine production by splenic mononuclear cells (IL-4: 0.08 +/- 0.01 vs 0.17 +/- 0.01 ng/mL; IL-5: 1.98 +/- 0.52 vs 4.11 +/- 0.54 ng/mL; P <.01), and extent of airway eosinophilia (total cell counts: 93 vs 376 x 10(3)/mL; eosinophils: 23% vs 51%; P <.01) compared with that in OVA-sensitized mice. Local LPS administration to sensitized mice before airway allergen challenges particularly induced IFN-gamma production by peribronchial lymph node cells in vitro (1718 +/- 315 vs 483 +/- 103 ng/mL, P <.01) associated with reduced airway eosinophilia compared with that seen in OVA-sensitized mice. Development of increased AR was not affected by systemic or local LPS exposure. Inhibitory effects of LPS on allergen sensitization and eosinophilic airway inflammation were inhibited by administration of anti-IL-12 antibodies before LPS exposure. CONCLUSION: These data indicate that local and systemic application of LPS modulates systemic and local T(H)1/T(H)2 immune responses in a distinct but similarly IL-12-dependent mode.  相似文献   

5.
Chemokine receptor (CCR) 5 is expressed on dendritic cells, macrophages, CD8 cells, memory CD4 T cells, and stromal cells, and is frequently used as a marker of T helper type 1 cells. Interventions that abrogate CCR5 or interfere with its ligand binding have been shown to alter T helper type 2-induced inflammatory responses. The role of CCR5 on allergic airway responses is not defined. CCR5-deficient (CCR5(-/-)) and wild-type (CCR5(+/+)) mice were sensitized and challenged with ovalbumin (OVA) and allergic airway responses were monitored 48 hours after the last OVA challenge. Cytokine levels in lung cell culture supernatants were also assessed. CCR5(-/-) mice showed significantly lower airway hyperresponsiveness (AHR) and lower numbers of total cells, eosinophils, and lymphocytes in bronchoalveolar lavage (BAL) fluid compared with CCR5(+/+) mice after sensitization and challenge. The levels of IL-4 and IL-13 in BAL fluid of CCR5(-/-) mice were lower than in CCR5(+/+) mice. Decreased numbers of lung T cells were also detected in CCR5(-/-) mice after sensitization and challenge. Transfer of OVA-sensitized T cells from CCR5(+/+), but not transfer of CCR5(-/-) cells, into CCR5(-/-) mice restored AHR and numbers of eosinophils in BAL fluid after OVA challenge. Accordingly, the numbers of airway-infiltrating donor T cells were significantly higher in the recipients of CCR5(+/+) T cells. Taken together, these data suggest that CCR5 plays a pivotal role in allergen-induced AHR and airway inflammation, and that CCR5 expression on T cells is essential to the accumulation of these cells in the airways.  相似文献   

6.
BACKGROUND: Gastrointestinal allergy often precedes or coexists with respiratory allergy. OBJECTIVE: We hypothesized that established experimental gastrointestinal allergy would prime for the development of allergic respiratory responses. METHODS: BALB/c mice were sensitized with ovalbumin (OVA) in the presence of aluminum potassium sulfate and then subjected to intragastric saline or OVA challenges. After the development of allergen-induced gastrointestinal allergy, mice were intranasally exposed to either saline, OVA, or a neoaeroallergen house dust mite (HDM) extract. Airway inflammation (eg, bronchoalveolar lavage fluid cellularity, cytokine levels, and OVA-specific antibody levels) and airway responsiveness to methacholine exposure were assessed after intranasal allergen exposure. RESULTS: A single intranasal exposure to OVA induced significantly more airway inflammation in intragastric OVA-challenged mice compared with that seen in intragastric saline-treated mice. Kinetic analysis revealed that the observed amplification of lung inflammation was sustained for up to 12 days after the last intragastric OVA challenge after resolution of blood eosinophilia. When mice with gastrointestinal allergy were repeatedly challenged with HDM in the respiratory tract, they experienced enhanced airway inflammation, including bronchoalveolar lavage fluid eosinophilia and increased IL-13 levels. CONCLUSION: Taken together, our results demonstrate that OVA-induced gastrointestinal allergy enhances not only allergic airway responses to OVA but also to HDM, an unrelated aeroallergen. CLINICAL IMPLICATIONS: Experimental gastrointestinal allergy primes for responses to allergens in the respiratory tract, enhancing antigen-specific antibody and T(H)2 cytokine production, airway inflammation, and airway hyperresponsiveness.  相似文献   

7.
BACKGROUND: Recent epidemiological studies have suggested that exposure to certain viruses and bacteria influences the development of allergy and allergic diseases, such as asthma. However, there is a paucity of experimental evidence examining the consequences of concurrent exposure to allergen and infectious agents, and the potential mechanisms by which allergic disease might be averted as a result. OBJECTIVE: To model this situation experimentally, we investigated whether a virally induced immune response, elicited by a replication-deficient human type 5 adenovirus (RDA) administered at a site distant from the airways, could inhibit ovalbumin (OVA)-induced airways eosinophilic inflammation. METHODS: C57BL/6 mice were infected intramuscularly with RDA 16h prior to intraperitoneal OVA sensitization. Cellular and cytokine responses in the lung/airways were examined after an OVA aerosol challenge. RESULTS: RDA infection significantly inhibited the inflammatory response in the lung tissue after antigen challenge. In the bronchoalveolar lavage (BAL), total cell number, eosinophils and lymphocytes were decreased by 70, 85 and 65%, respectively, after antigen challenge in RDA-treated, compared with untreated, mice. RDA infection had no effect on IgE synthesis. The levels of IL-5, IL-4 and IFNgamma in the BAL after antigen challenge were significantly lower in RDA-treated mice. In vitro production of cytokines by splenocytes in response to OVA restimulation revealed a shift from IL-4 in sensitized, PBS-treated mice, to IFNgamma in sensitized mice treated with RDA. Flow cytometric analysis revealed that RDA infection increased the proportion of CD8 T cells in the BAL; this change in T-cell subsets was accompanied by an increase in both CD4 and CD8 T cells positive for intracellular IFNgamma. Inhibition of antigen-induced airways inflammation was IFNgamma-dependent but did not require IL-12, as RDA-treatment inhibited airways inflammation in IL-12 but not IFNgamma knock-out mice. CONCLUSION: This study demonstrates that an immune response against a replication-deficient adenovirus during the initial exposure to OVA inhibits the development of airways inflammation after antigen aerosol challenge.  相似文献   

8.
Background: Increased ambient ozone levels have been associated with increased asthma morbidity in epidemiologic studies. Given that asthma is characterized by airway inflammation and increased sensitivity to airway irritants, it has been suggested that asthmatic subjects may be particularly sensitive to the effect of ozone. Objective: The objective of this study was to determine whether exposure to 0.16 ppm ozone induces eosinophilic inflammation in the lower airways of asthmatic subjects. Methods: Eight asthmatic subjects sensitive to mites were exposed to 0.16 ppm ozone and clean air on separate occasions no less than 4 weeks apart in a double-blind, randomized fashion followed by bronchoscopy 18 hours later. Bronchoalveolar lavage fluid and bronchial lavage fluid were examined for eosinophils. Results: Ozone induced significant increases in airway eosinophils, especially in bronchial lavage fluid. Conclusions: Ozone exposure results in increased eosinophilic inflammation in the lower airways of asthmatic subjects with allergies. (J Allergy Clin Immunol 1997;100:802-8.)  相似文献   

9.
We previously defined a role for B cells and allergen-specific immunoglobulins in the development of allergic sensitization, airway inflammation, and airway hyperresponsiveness (AHR), using a 10-d protocol in which allergen exposure occurred exclusively via the airways, without adjuvant. In the present protocol, normal and B-cell-deficient (microMt(-/-)) mice were sensitized intraperitoneally to ovalbumin (OVA) and challenged with OVA via the airways in order to examine the requirements for AHR with this protocol. T-cell activation (antigen-specific proliferative responses and Th2-type cytokine production) and eosinophil infiltration in the peribronchial regions of the airways, with signs of eosinophil activation and degranulation, occurred in both experimental groups. In contrast to the 10-d protocol, increased in vivo airway responsiveness to methacholine and in vitro tracheal smooth-muscle responses to electrical field stimulation were observed in both normal and B-cell-deficient mice, and these responses were inhibited by anti-interleukin (IL)-5 administration before airway challenge. These data show that IL-5, but not B cells or allergen-specific IgE, are required for eosinophil airway infiltration and the development of AHR following allergen/alum sensitization and repeated airway challenge with allergen. These results emphasize that the use of different sensitization and challenge protocols can influence the requirements for development of AHR.  相似文献   

10.
BACKGROUND: The pathophysiology of infantile asthma may differ from that in older children or in adults, partly because of the different immune response depending upon maturation. In adult mice, the sensitizing dose of antigen is known to be critical to the polarized development of helper T cell subsets and allergic airway inflammation. We wanted to know the characteristics of allergic airway inflammation of infantile asthma by developing a murine model. METHODS: BALB/C mice at different stages of maturation (juvenile: 3 days after birth; adult: 8 weeks of age) were sensitized with 10 or 1,000 microg ovalbumin (OVA) or vehicle. The animals were then challenged with aerosolized OVA or saline once a day during 6 consecutive days. After the final challenge, bronchial hyperresponsiveness (BHR), bronchoalveolar lavage fluid (BALF), histological changes in the airways and immunological status were examined. RESULTS: In both juvenile and adult animals, sensitization with 10 microg OVA induced the T helper 2 response (elevated IL-4 and decreased IFN-gamma levels). BHR, airway eosinophilia, the inflammatory cell infiltration, goblet cell metaplasia (GCM), and IgE antibody production were more prominent in animals given this dose than 1,000 microg OVA. Among these responses, GCM as well as BALF IL-4, and BHR were comparable between juvenile and adult animals, whereas other parameters were lower in juvenile animals, especially in those given 1,000 microg OVA. CONCLUSION: GCM and, consequently, airway mucus hypersecretion may be an important component of allergic airway inflammation in infantile asthma.  相似文献   

11.
BACKGROUND: Since antigen-specific IgE and eosinophils are major inducing factors of allergic inflammation of the airways, both factors are therapeutic targets of asthma. We investigated the effects of ONO-4007, a nontoxic lipid A analogue, on antigen-specific antibody response and the recruitment of eosinophils into airways in murine systems. METHODS: BALB/c mice were injected ONO-4007 intraperitoneally during sensitization with ovalbumin (OVA) and aluminium hydroxide to determine its effects on the antigen-specific antibody response. ONO-4007 was also injected intravenously during either systemic sensitization and inhalation with OVA, or sensitization or inhalation alone to determine its effects on antigen-induced airway inflammation. In vitro effects of ONO-4007 on the functional differentiation of naive CD4+ T cells were investigated by culturing naive CD4+ T cells derived from DO11.10 mice and OVA-pulsed dendritic cells (CDCs) with ONO-4007. RESULTS: ONO-4007 inhibited antigen-specific IgE and IgG1, but not IgG2a responses. ONO-4007 decreased the recruitment of eosinophils and the levels of IL-5 in bronchoalveolar lavage fluid, not only when it was injected during systemic sensitization and inhalation with OVA, but also during inhalation alone. ONO-4007 inhibited the differentiation of IL-4- and IL-13-producing CD4+ T cells in vitro, which was partly mediated by DCs. CONCLUSIONS: ONO-4007 inhibited antigen-specific IgE and IgG1 responses and antigen-induced eosinophil recruitment into the airways in BALB/c mice. These effects were mediated, at least partly, by the modulation of DCs, although there may also be other mechanisms.  相似文献   

12.
BACKGROUND: Epidemiologic studies show that sudden surges in ambient particulate matter (PM) levels can trigger acute asthma exacerbations. Although diesel exhaust particles (DEPs) act as an adjuvant for allergic sensitization, this is a delayed response and does not explain acute PM effects on airway hyperreactivity (AHR). OBJECTIVE: Our aim was to determine the acute effects of DEPs on AHR using a mouse model. METHODS: Three protocols were developed, 2 of which require OVA sensitization, whereas the third was OVA independent. In the mild sensitization protocol BALB/c mice receive intraperitoneal OVA without alum and are then challenged with aerosolized OVA with or without DEPs. In the postchallenge model DEPs are delivered after OVA challenge to animals sensitized by intraperitoneal OVA plus alum. In the third protocol nebulizer DEPs were also delivered to IL-5-overexpressing mice that exhibit constitutive airway inflammation. Animals were subjected to whole-body plethysmography (WBP) and then killed for performance of bronchoalveolar lavage, histology, and serology. RESULTS: DEP delivery concomitant with OVA challenge or after the induction of airway inflammation with this allergen induced increased AHR in models 1 and 2, respectively. Although these animals showed DEP-induced inflammation and mucus production in the intermediary airways, there was no effect on OVA-specific IgE or T(H)2 cytokine production. In the IL-5 transgenic mice it was possible to induce similar effects with DEPs in the absence of an allergen. CONCLUSION: We demonstrate that DEPs induced AHR independent of their adjuvant effects, suggesting the use of these models to study the mechanism or mechanisms of acute asthma exacerbation by means of PM.  相似文献   

13.
BACKGROUND: Tachykinins-like substance P (SP) have been shown to play an important role in initiating and perpetuating airway inflammation. Furthermore, they are supposed to be released into tissues in response to stress. OBJECTIVE: The aim of this study was to investigate the effects of stress alone or in combination with allergic airway inflammation on SP expression in sensory neurons innervating the mouse airways. METHODS: Balb/c mice were systemically sensitized to ovalbumin (OVA), followed by allergen aerosol exposure, and compared with non-sensitized controls. Additionally, OVA-sensitized and -challenged and non-sensitized mice were exposed to sound stress. SP expression in airway-specific and overall vagal sensory neurons of the jugular and nodose ganglion complex was analysed using retrograde neuronal tracing in combination with immunohistochemistry. Preprotachykinin A (PPT-A) mRNA, the precursor for SP, was quantified in lung tissue by real-time PCR. Bronchoalveolar lavage (BAL) fluid was obtained, and cell numbers and differentiation were determined. RESULTS: Stress and/or allergic airway inflammation significantly increased SP expression in retrograde-labelled vagal sensory neurons from the mouse lower airways compared with controls [stress: 15.7+/-0.8% (% of retrograde-labelled neurons, mean+/-SEM); allergen: 17.9+/-0.4%; allergen/stress: 13.1+/-0.7% vs. controls: 6.3+/-0.3%]. Similarly, SP expression increased in overall vagal sensory neurons identified by the neuronal marker protein gene product (PGP) 9.5 [stress: 9.3+/-0.6% (% of PGP 9.5-positive neurons, means+/-SEM); allergen: 12.5+/-0.4%; allergen/stress: 10.2+/-0.4% vs. controls: 5.1+/-0.3%]. Furthermore, stress significantly increased PPT-A mRNA expression in lung tissue from OVA-sensitized and -challenged animals, and immune cells were identified as an additional source of SP in the lung by immunohistochemistry. Associated with enhanced neuronal SP expression, a significantly higher number of leucocytes were found in the BAL following allergen exposure. Further, stress significantly increased allergen-induced airway inflammation identified by increased leucocyte numbers in BAL fluids. CONCLUSION: The central event of sound stress leads to the stimulation of SP expression in airway-specific neurons. However, in sensitized stressed mice an additional local source of SP (probably inflammatory cells) might enhance allergic airway inflammation.  相似文献   

14.
BACKGROUND: Cytokines play an integral role in the coordination and persistence of allergic inflammatory processes and therefore represent prime targets for novel therapies in diseases such as asthma. Multiple attempts to generate low-molecular-weight cytokine inhibitors have failed, and the main attention has focused on the development of biological agents such as neutralizing antibodies. The present work describes a simple and effective method to induce the production of therapeutic anti-cytokine autoantibodies by active immunization against a modified endogenous cytokine. METHODS: Balb/c mice were subcutaneously injected with AutoVac TNF106, a recombinant murine TNF-alpha molecule containing a foreign immunogenic T helper epitope, and the induction of neutralizing anti-TNF-alpha autoantibodies was analysed. These mice were then sensitized with ovalbumin (OVA), and the effect of neutralizing anti-TNF-alpha autoantibodies on the allergen-induced airway inflammation was analysed. RESULTS: AutoVac TNF106-immunized mice developed high titres of neutralizing anti-TNF-alpha autoantibodies, which were maintained for at least 4 weeks after the last booster injection. Mice vaccinated with AutoVac TNF106 and further immunized against OVA showed diminished TNF-alpha levels in the bronchoalveolar lavage (BAL) fluid after OVA challenge. Moreover, pretreatment with AutoVac TNF106 resulted in significantly reduced numbers of eosinophils and neutrophils in BAL fluid in response to single or multiple allergen exposure. CONCLUSION: The induction of anti-TNF-alpha autoantibody production by the AutoVac TNF106 technology not only confirmed the role of TNF-alpha in the induction of allergic inflammation but also offers a novel approach to block the activity of cytokines in order to treat allergic inflammatory conditions.  相似文献   

15.
BACKGROUND: Airway dendritic cells (DCs) capture and present inhaled antigen. It is not known whether antigen presentation by DCs in the airways is sufficient to induce sensitization to inhaled antigen in vivo. METHODS: Rats were immunized by intratracheal instillation of ovalbumin (OVA) -pulsed bone marrow-derived DCs or macrophages and exposed 10 days later to a 30-min aerosol of OVA on 3 consecutive days. Total and differential cell counts and flow cytometry on bronchoalveolar lavage (BAL) fluid, airway histology and serum OVA-immunoglobulin (Ig) E levels were analysed 24 h after the last exposure. RESULTS: As few as 2 x 104 OVA-DC induced sensitization to inhaled OVA. The secondary response to OVA-aerosol consisted of an antigen-specific increase in the number of bronchoalveolar mononuclear cells, activated CD4-positive alphabeta-TCR T lymphocytes, neutrophils and few eosinophils. Peribronchial and perivascular mononuclear cell infiltrates were seen on histological analysis. There was no production of systemic OVA-IgE. Bone marrow-derived macrophages did not induce sensitization. CONCLUSION: Delivering antigen to the respiratory tract via professional antigen-presenting DCs sensitizes for a secondary response to inhaled antigen leading to airway inflammation. This model will prove very useful for studying the early events of sensitization to inhaled antigen using the respiratory route.  相似文献   

16.
Background: Allergic asthma is a Th2-type chronic inflammatory disease of the lung. It is characterized by infiltration of eosinophils, neutrophils, mast cells and T lymphocytes into the airways. Th2 cytokines like interleukin (IL)-4, IL-5 and chemokines like eotaxin are increased in the asthmatic response. The processing and presentation of exogenous antigens is important in the sensitization to an allergen. Cathepsin E (Ctse) is an intracellular aspartic endoprotease which is expressed in immune cells like dendritic cells (DCs). It was found to play an essential role in the processing and presentation of ovalbumin (OVA). The aim of the present study was to investigate the inhibition of Ctse in two different experimental models of allergic airway inflammation. Methods: Ctse wild-type (Ctse(+/+)) and Ctse-deficient (Ctse(-/-)) bone marrow-derived DCs (BMDCs) were pulsed with OVA/OVA peptide and cocultured with OVA transgenic T II (OT II) cells whose proliferation was subsequently analyzed. Two different in vivo asthma models with Ctse(+/+) and Ctse(-/-) mice were performed: an acute OVA-induced and a subchronic Phleum pratense-induced airway inflammation. Results: Proliferation of OT II cells was decreased when cocultured with BMDCs of Ctse(-/-) mice as compared to cells cocultured with BMDCs of Ctse(+/+) mice. In vivo, Ctse deficiency led to reduced lymphocyte influx after allergen sensitization and challenge in both investigated airway inflammation models, compared to their control groups. Conclusion: Ctse deficiency leads to a reduced antigen presentation in vitro. This is followed by a distinct effect on lymphocyte influx in states of allergic airway inflammation in vivo.  相似文献   

17.
We studied the role of interleukin (IL)-4, IL-5, and allergen-specific immunoglobulin (Ig) E in the development of allergen-induced sensitization, airway inflammation, and airway hy-perresponsiveness (AHR). Normal, IL-4-, and IL-5-deficient C57BL/6 mice were sensitized intraperitoneally to ovalbumin (OVA) and repeatedly challenged with OVA via the airways. After allergen sensitization and airway challenge, normal and IL-5-deficient, but not IL-4-deficient, mice developed increased serum levels of total and antigen-specific IgE levels and increased IL-4 production in the lung tissue compared with nonsensitized control mice. Only normal mice showed significantly increased IL-5 production in the lung tissue and an eosinophilic infiltration of the peribronchial regions of the airways, whereas both IL-4- and IL-5-deficient mice had little or no IL-5 production and no significant eosinophilic airway inflammation. Associated with the inflammatory responses in the lung, only normal mice developed increased airway responsiveness to methacholine after sensitization and airway challenge; in both IL-4- and IL-5-deficient mice, airway responsiveness was similar to that in nonsensitized control mice. Reconstitution of sensitized, IL-4-deficient mice before allergen airway challenge with IL-5, but not with allergen-specific IgE, restored eosinophilic airway inflammation and the development of AHR. These data demonstrate the importance of IL-4 for allergen-driven airway sensitization and that IL-5, but not allergen-specific IgE, is required for development of eosinophilic airway inflammation and AHR after this mode of sensitization and challenge.  相似文献   

18.
BACKGROUND: IL-10 affects dendritic cell (DC) function, but the effects on airway hyperresponsiveness (AHR) and inflammation are not defined. OBJECTIVE: We sought to determine the importance of IL-10 in regulating DC function in allergen-induced AHR and airway inflammation. METHODS: DCs were generated from bone marrow in the presence or absence of IL-10. In vivo IL-10-treated DCs from IL-10(+/+) and IL-10(-/-) donors pulsed with ovalbumin (OVA) were transferred to naive or sensitized mice before challenge. In recipient mice AHR, cytokine levels, cell composition of bronchoalveolar lavage (BAL) fluid, and lung histology were monitored. RESULTS: In vitro, IL-10-treated DCs expressed lower levels of CD11c, CD80, and CD86; expressed lower levels of IL-12; and suppressed T(H)2 cytokine production. In vivo, after transfer of OVA-pulsed IL-10-treated DCs, naive mice did not have AHR, airway eosinophilia, T(H)2 cytokine increase in BAL fluid, or goblet cell metaplasia when challenged, and in sensitized and challenged mice IL-10-treated DCs suppressed these responses. Levels of IL-10 in BAL fluid and numbers of lung CD4(+)IL-10(+) T cells were increased in mice that received OVA-pulsed IL-10-treated DCs. Transfer of IL-10-treated DCs from IL-10-deficient mice were ineffective in suppressing the responses in sensitized and challenged mice. CONCLUSIONS: These data demonstrate that IL-10-treated DCs are potent suppressors of the development of AHR, inflammation, and T(H)2 cytokine production; these regulatory functions are at least in part through the induction of endogenous (DC) production of IL-10. CLINICAL IMPLICATIONS: Modification of DC function by IL-10 can attenuate lung allergic responses, including the development of AHR.  相似文献   

19.
BACKGROUND: New preventive strategies against the development of allergic diseases focus on potentially immunomodulatory components, such as bacterial LPSs. Optimal time frames for initiating immunomodulation to receive a sufficient effect against allergen sensitization are still unclear. OBJECTIVE: Using a mouse model, we investigated the influence of prenatal LPS exposure on later allergen-mediated sensitization and airway inflammation in the offspring. METHODS: Pregnant BALB/c mice were repeatedly exposed to aerosolized LPS (LPS Escherichia coli; 3x per week, day 7 of gestation time up to delivery). Some of the offspring were further exposed to aerosolized LPS before allergen sensitization with ovalbumin (OVA; administered intraperitoneally day 28 up to day 42) and OVA airway challenges (days 56-58). Positive control animals were placebo exposed to PBS instead of LPS, and negative control animals were first placebo exposed and later placebo sensitized with PBS instead of OVA. RESULTS: Compared with positive control animals, prenatal LPS exposure suppressed (1) allergen-specific sensitization (IgE production), (2) eosinophilic airway inflammation (reduced numbers of eosinophils in bronchoalveolar lavage fluids), and (3) in vivo airway reactivity in response to methacholine. These effects occurred only when prenatal was combined with further postnatal LPS exposure. Suppression of allergen-mediated inflammatory responses was associated with increased Toll-like receptor and T-bet expression by lung tissues and a shift toward predominantly T(H)1 immune responses in spleen cells cultured with OVA in vitro. CONCLUSION: Prenatal initiated and postnatal sustained LPS exposure increased endotoxin susceptibility and prevented later allergen sensitization in offspring through inhibition of T(H)2 immune responses. CLINICAL IMPLICATIONS: Immunomodulation with bacterial compounds during gestation time might be an effective mode for first-step primary prevention against allergic diseases.  相似文献   

20.
Background Eosinophilic infiltration into the airways is frequently associated with allergic asthma; however, the role of antigen deposition in mediating this phenomenon has not been studied in detail.
Objective Using a murine model of ovalbumin (OVA) allergy, we examined how differential deposition of OVA during antigen challenge affects pulmonary eosinophilia, immune response and airway hyper-reactivity (AHR).
Methods Differential allergen deposition to the upper respiratory tract (URT) alone or combined upper and lower respiratory tract (ULRT) was accomplished by administering OVA intranasally to either anaesthetized or unanaesthetized mice, respectively. BALB/c mice (6–7 weeks old) were sensitized with OVA–alum via the intraperitoneal route, and then challenged intranasally using OVA, with or without anaesthesia. AHR, enumeration of inflammatory cells and quantitative measurement of inflammatory cytokines and chemokines in bronchoalveolar lavage fluid (BALF), lung histopathology and immune responses were subsequently assessed.
Results In sensitized animals challenged via the ULRT route, a profound eosinophilia and goblet cell hyperplasia was observed in lung tissue. Conversely, sensitized mice receiving an identical challenge dose via the URT route alone exhibited only negligible levels of inflammation. Interestingly, AHR and OVA-specific IgG1 and IgE systemic responses were comparable between the two groups.
Conclusion This study indicates that direct exposure of allergen in the deep lung is highly correlated with airway eosinophilia and lung inflammation, but does not correlate with AHR or immune response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号