首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
刘红星  谢在库  张成芳  陈庆龄 《石油化工》2004,33(Z1):1532-1533
考察了反应时间、反应温度、进料水醇比对甲醇转化制烯烃反应产物中乙烯/丙烯比、乙烯+丙烯的初始选择性的影响.结果表明,通过调节反应温度可灵活地调节乙烯/丙烯比;反应时间也对乙烯/丙烯比有明显的影响;提高进料水醇比可在一定程度上提高催化剂的寿命和(乙烯+丙烯)的初始选择性,但水醇比对反应产物中乙烯、丙烯的相对比例无明显影响.  相似文献   

2.
在固定流化床反应器上,采用 LCC-200型多产低碳烯烃催化剂,以大庆常压渣油为原料,考察了反应温度、重时空速、催化剂与原料油的质量比(剂油比)、水蒸气与原料油的质量比(水油比)对催化裂解产物分布的影响,并与提升管反应器的催化裂解实验结果进行了对比。实验结果表明,反应温度和剂油比对低碳烯烃收率的影响较大,重时空速和水油比的影响相对较小;较高的反应温度有利于多产低碳烯烃,低碳烯烃收率随剂油比的增大存在最佳。值在620℃、剂油比4、重时空速10 h~(-1)、水油比0.10的优化反应条件下,丙烯收率约为18%,乙烯、丙烯和丁烯的总收率约为35%。在相似的操作条件下,采用固定流化床反应器时,干气、液化石油气、汽油和焦炭的收率比提升管反应器离,而油浆和柴油的收率低;同时,乙烯、丙烯和丁烯的总收率也低。  相似文献   

3.
研究了原料气中乙烷含量对Cr/MSU-1催化剂上CO_2氧化丙烷脱氢反应的影响,并考察了反应温度和空速的影响。保持总烷烃与CO_2的体积比为1:3,当原料气总空速及烷烃总量恒定时,提高乙烷的含量对丙烷转化率影响不大,但烯烃选择性先升高后降低;当原料气总空速及丙烷含量恒定时,加入乙烷降低了丙烷转化率,提高了丙烯的选择性及收率;随反应温度的升高,丙烷及总烷烃的转化率增大,丙烯及总烯烃的选择性减小,其变化规律与单一丙烷的脱氢过程一致;提高空速丙烷的转化率降低,烯烃的选择性增加。在最佳反应条件即反应温度650℃、丙烷与乙烷的体积比3:2、空速8 400 mL/(h·g)下,总烷烃转化率为50.0%,总烯烃选择性为92.2%,丙烯选择性为83.1%。  相似文献   

4.
在装有条形ZRP催化剂的固定床反应器上,考察了催化裂化汽油在ZRP稀土改性催化剂上的反应性能,反应温度、空速、原料中水油比等工艺条件对催化裂化汽油烯烃转化率和低碳烯烃收率、选择性的影响。实验结果表明:ZRP稀土改性催化剂可选择性地将催化裂化汽油中C5~C8烯烃催化裂解,提高催化裂化汽油烯烃的转化率和丙烯的收率;反应的适宜温度为550-580℃;在保证烯烃转化率的条件下,适当提高反应空速可以获得较高的丙烯、乙烯收率;引入适量的水蒸气可以起到稀释作用,能够使反应平衡向丙烯方向移动。  相似文献   

5.
《天然气化工》2015,(5):29-33
试验将合成气制低碳混合醇的固定床Cu-Fe-Mn-Co催化剂用于浆态床反应器,研究了反应温度(200~270℃)、压力(5.0MPa~7.0MPa)、原料气空速(2713~5515h-1)、氢碳比(n(H2)/n(CO)=1.5/3.5)和搅拌器转速(400~1200r/min)等工艺条件对催化剂性能的影响。结果表明:温度对CO转化率及时空产率影响显著,260℃为低碳醇合成的最佳反应温度;反应压力在7.0MPa时总醇选择性及时空产率达到最高值;空速的增加可以提高催化剂的低碳醇产能,减少CO2的生成,但同时原料气转化率随之降低;氢碳比过低会造成总醇选择性的大幅降低,过高又会导致甲醇选择性的增加,选择在2~2.5之间对低碳醇的生成较为有利;提高搅拌器转速可以更大程度的消除或减小外扩散影响,但同时需兼顾搅拌桨对浆态床催化剂磨损的影响。  相似文献   

6.
本发明涉及一种以合成气为原料两段法制备低碳烯烃的方法。该方法是将费托合成工艺与烯烃反歧化工艺组合成两段工艺制备低碳烯烃。该两段法工艺均在固定床反应器中进行,合成气先在一段固定床反应器中通过费托合成催化剂制备出含有较高乙烯、丙烯、丁烯选择性的烃类混合物,反应产物经冷阱脱除液相产物、分子筛除水、  相似文献   

7.
以n(Si)/n(A1)分别为25、38、50、80、360的ZSM-5分子筛为催化剂,利用N2吸附-脱附、XRD和NH3-TPD对催化剂的孔结构和表面酸性进行表征分析,测定催化剂对甲醇制低碳烯烃(MTO)各产物的选择性,讨论催化剂的孔结构与表面酸性对其催化性能的影响。结果表明,随硅铝比增加,催化剂平均孔径逐渐减小,中强酸逐渐消失,酸强度逐渐减弱,烯烃的选择性逐渐增大,催化剂的稳定性逐渐增强。其中,硅铝比360的分子筛具有最低的表面酸强度,最大的比表面积和最小的孔径,MTO催化性能最佳,乙烯+丙烯的选择性达69.36%。  相似文献   

8.
丙烯和苯液相烷基化反应中分子筛性能的研究   总被引:7,自引:1,他引:6  
周斌  高焕新  方华  顾瑞芳 《石油化工》2002,31(11):883-886
对丙烯和苯液相烷基化反应中的几种分子筛的性能进行了比较研究。结果表明,MCM-56分子筛催化剂烷基化反应稳定性及产物选择性明显优于Y、β分子筛催化剂。MCM-56分子筛催化剂更能适应低温反应和低苯烃比反应,推荐工艺条件为:温度130~145℃、压力2 5MPa、n(苯)/n(烃)=2~3、丙烯空速0 8~1 0h-1。  相似文献   

9.
甲醇转化制烯烃反应规律的研究   总被引:1,自引:0,他引:1  
在固定流化床反应器中,ZSM-5沸石催化剂存在下,考察了反应温度、注水量、剂醇比、空速对甲醇转化制烯烃反应的影响。结果表明,在试验温度范围内(420-560℃),随温度升高,甲醇转化率升高.干气和焦炭产率升高,二甲醚含量减少,气中油和液化气含量降低,并且乙烯、丙烯、丁烯产率在520℃时达到最高值;提高注水量,烯烃的选择性和产率升高,焦炭产率降低;提高剂醇比,转化率升高,焦炭产率升高,乙烯、丙烯、丁烯产率下降;提高空速,甲醇的转化率降低,焦炭的产率降低,乙烯产率下降,丙烯产率升高。  相似文献   

10.
以四乙基氢氧化铵-三乙胺为模板剂,采用水热法合成了SAPO-34催化剂;研究了不同硅铝比(n(SiO2)∶n(Al2O3))合成的催化剂催化甲醇制烯烃反应的性能;并用XRD,BET,SEM,NH3-TPD等手段对催化剂进行了表征。实验结果表明,当n(SiO2)∶n(Al2O3)=0.30时,SAPO-34的结晶度最大,比表面积为490m2/g,晶粒粒径最大(0.6~1.5μm);随n(SiO2)∶n(Al2O3)的增大,SAPO-34的结晶度减小,比表面积增大,晶粒粒径减小。在反应温度425℃、甲醇的WHSV=1h-1时,以甲醇为原料,对不同n(SiO2)∶n(Al2O3)合成的催化剂的催化性能进行评价结果显示,当n(SiO2)∶n(Al2O3)=0.30时,甲醇转化率达到100.0%,低碳烯烃(乙烯+丙烯)的总选择性最高(达到86.87%),催化活性时间最长(546min);随n(SiO2)∶n(Al2O3)的增大,催化剂对低碳烯烃(乙烯+丙烯)的总选择性降低,催化活性时间缩短。  相似文献   

11.
对传统固定流化床反应器进行了必要的改进,将固定流化床反应器拓展应用到甲醇制烯烃反应研究中。通过调整预热温度及更换下行进料管材质,使甲醇在与催化剂接触前的分解几率降到最低。装置平行性及物料平衡考察结果表明,该反应器数据重复性良好,物料平衡可达到97%。采用SAPO-34分子筛催化剂,在固定流化床反应器中分别考察了反应温度和水醇比(质量比)对甲醇制烯烃主要反应产物分布的影响。温度实验结果表明:甲醇转化率接近于100%,反应温度的提高可大大提高乙烯的选择性,C2=~C4=选择性可达到90%以上;同时温度的升高使得催化剂上积炭速率增快;对于以乙烯为主要目的产物的甲醇制烯烃工艺,建议将反应温度选择为500℃,C2=/C3=摩尔比可稳定在1.5左右;若以丙烯为主要目的产物,建议将反应温度选择在450~470℃之间,C2=/C3=摩尔比可稳定在0.9~1.1之间。水醇比实验结果表明:水不但可以延缓催化剂的积炭速率,而且还可以大大增加乙烯的选择性,较大的水醇比可以将C2=/C3=摩尔比提高到2.0以上;无论是期望乙烯为主要目的产物还是丙烯为主要目的产物,太大的水醇比会增加能耗,增大反应器及产物分离器的负荷,所以,建议将水醇比都选择在0.25~0.5之间。  相似文献   

12.
以负载ZnO的ZSM-5为催化剂,利用固定床微型反应装置系统地考察了反应温度、反应空速、投料摩尔比对甲醇与正戊烷共芳构化反应的影响。结果表明:与单独芳构化相比,正戊烷与甲醇共芳构化可提高芳烃的选择性,抑制干气的生成;随着甲醇与正戊烷摩尔比的增大,正戊烷的转化率下降;正戊烷与甲醇在ZSM-5分子筛上进行芳构化反应的适宜反应条件为:温度475℃,烃基质量空速2 h-1,甲醇与正戊烷摩尔比3∶1;在优化工艺条件下,正戊烷与甲醇共芳构化反应中芳烃的选择性可达31.68%。  相似文献   

13.
研究了Al负载HZSM-5催化剂上甲醇制烯烃反应过程。考察了Al负载量、反应温度、空速、反应时间等因素对催化效果的影响。随着Al含量的增加,Al-HZSM-5催化剂的比表面积、孔体积逐渐减小,但骨架结构没有变化,乙烯和丙烯选择性明显优于改性前的HZSM-5。Al的最佳负载质量分数为6.0%,此时低碳烯烃的选择性有最大值为69.3%;380℃为最佳反应温度,空速最佳范围在786mL/(g.h)~996mL/(g.h)。随着反应时间增长,催化剂会逐渐积碳失活。  相似文献   

14.
MAF固体碱催化剂催化合成丙二醇甲醚   总被引:11,自引:3,他引:8  
李军  崔凤霞  阎雨  王晓燕  秦永宁 《石油化工》2003,32(10):833-836
研究了甲醇与环氧丙烷在固体碱催化剂MAF存在下非均相合成丙二醇甲醚的过程。在反应温度为120~130℃、催化剂用量(质量分数)为0.20%~0.30%、甲醇与环氧丙烷摩尔比为3/1~5/1的反应条件下,环氧丙烷的转化率在98%以上,丙二醇甲醚的选择性达95%,收率达93%,产品中伯醚的选择性为92%~93%。实验发现,该固体碱催化剂使用后无须任何处理,可重复使用,是一种稳定性好、选择性高的环境友好催化剂。  相似文献   

15.
低温高活性甲醇水蒸气重整制氢催化剂的研究   总被引:6,自引:0,他引:6  
研究了Cu/La2 O3 /ZrO2 基催化剂在甲醇水蒸气重整制氢反应中的反应活性、选择性及其还原行为 ,并考察了反应条件 (温度、水醇比、液体空速 )对活性和选择性的影响。结果表明 :Cu/La2 O3 /ZrO2 基催化剂在甲醇水蒸气重整制氢反应过程中显示出较好的反应活性和高的选择性。在常压、反应温度 190~ 2 40℃、液体空速为 1 0~ 3 0h-1和水醇摩比为 1~ 3 0的反应条件下 ,甲醇转化率随着反应温度的升高而增大 ,重整产物中CO含量有所增加 ;提高水醇比有利于提高甲醇转化率 ,同时可降低重整产物中CO含量 ;甲醇转化率随着液体空速的增加有所降低 ,而重整产物中CO含量也有所降低。在Cu/La2 O3 /ZrO2 基催化剂上 ,甲醇重整反应和水 汽变换反应有可能同时进行  相似文献   

16.
负载磷钨酸催化苯与乙烯液相烷基化   总被引:5,自引:2,他引:3  
以负载磷钨酸为催化剂 ,考察催化剂预处理温度、反应温度、原料苯中溶解水量、苯烯摩尔比和苯进料质量空速对苯与乙烯液相烷基化反应的影响。实验表明 ,负载磷钨酸的催化活性和预处理温度密切相关 ,在 2 10℃预处理时 ,催化活性最高 ;负载磷钨酸在 14 0℃以上 ,具有很高的催化活性和很好的乙苯选择性。在优化的反应条件下 ,乙烯的转化率为 10 0 % ,乙苯的选择性大于 90 % ,乙基化的选择性大于 98%。  相似文献   

17.
研究了晶粒具有空心结构的钛硅分子筛(HTS)催化丙烯环氧化反应的催化性能。分别考察了成型粘结剂、反应温度对HTS催化丙烯环氧化反应的影响。结果表明,硅溶胶作粘合剂挤条成型催化剂对环氧丙烷的选择性显著优于铝溶胶,环氧丙烷选择性和H2O2有效利用率均随反应温度的升高而降低。在固定床反应装置上,采用正交试验法优化的反应条件为:丙烯与H2O2的摩尔比3∶1,甲醇与H2O2的摩尔比为40∶1,质量空速为7.5 h-1。  相似文献   

18.
固定床催化合成N-甲基哌嗪   总被引:1,自引:0,他引:1  
采用浸渍法制备负载型Cu-Ni/Al2O3,Cu-Ni-Mo/Al2O3,Cu-Ni-Co/Al2O3,Cu-Ni-Cr/Al2O3,Cu/Al2O3催化剂,并用于催化以哌嗪和甲醇为原料的N-甲基化反应合成N-甲基哌嗪。在固定床中考察了不同负载型金属催化剂、反应温度、n(甲醇)∶n(哌嗪)、LHSV等因素对合成N-甲基哌嗪反应的影响。实验结果表明,Cu-Ni-Mo/Al2O3催化剂的催化活性最好;采用Cu-Ni-Mo/Al2O3催化剂,合成N-甲基哌嗪的适宜条件为:n(甲醇)∶n(哌嗪)=2.5,氢气为载气,LHSV=0.20h-1,反应温度180℃,反应压力0.8MPa;在此条件下,哌嗪的转化率达到90.5%,N-甲基哌嗪的选择性达到86.9%。  相似文献   

19.
环氧丙烷与低级脂肪醇在固体酸催化剂上的醚化   总被引:5,自引:1,他引:4  
叙述了环氧丙烷与低级脂肪醇在LA2型固体酸催化剂上的反应。催化剂的选择性和活性是在一定压力和温度下于液固相体系中进行评价。通过实验证明,当反应温度在110—160℃之间、反应压力1.3—1.6MPa、醇与环氧丙烷的摩尔比例为4.5—7∶1、液体空速小于7ml/gcat·h条件下反应,环氧丙烷的单程转化率>99%。催化剂寿命试验表明,经过1500小时反应后,催化剂的活性仍无明显的退化。  相似文献   

20.
采用等温固定床反应器,考察了反应温度、甲苯/丙烯摩尔比和质量空速对甲苯-丙烯烷基化规律及产物分布的影响,还通过质谱检测出产物中含有的各种物质。结果表明:以β沸石为基础制备的催化剂对甲苯与丙烯液相烷基化具有良好的催化活性和选择性,较为适宜的烷基化反应条件为温度220℃、甲苯/丙烯摩尔比7.75、质量空速3.4 h-1。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号