共查询到20条相似文献,搜索用时 22 毫秒
1.
传统神经网络具有过度依赖硬件资源和对应用设备性能要求较高的缺点,因此无法部署于算力有限的边缘设备和移动终端上,人工智能技术的应用发展在一定程度上受到了限制.然而,随着科技时代的到来,受用户需求影响的人工智能迫切需要在便携式设备上能成功进行如计算机视觉应用等方面的操作.为此,以近几年流行的轻量化神经网络中的卷积部分为研究... 相似文献
2.
为提高图像分类模型的准确度,提出了一种迁移学习VGG-16并对其进行改进的图像分类方法,即NewVGG-16模型.首先从ImageNet数据集中选取十种不同类型的部分图像数据,进行去噪、标准化等预处理;接着迁移学习VGG-16模型同时将其改进,模型的优化包括改进池化层为sort_pool2d,在每个卷积层后面添加BN层以增强规范性,并选用Adaboost分类器提升整体的分类性能.通过训练集实现模型参数的调整,用测试集检验其准确性.实验证明,该模型能有效提升图像分类的准确性和适用性,准确度可达到98.75%. 相似文献
3.
目的 糖尿病性视网膜病变(DR)是目前比较严重的一种致盲眼病,因此,对糖尿病性视网膜病理图像的自动分类具有重要的临床应用价值。基于人工分类视网膜图像的方法存在判别性特征提取困难、分类性能差、耗时费力且很难得到客观统一的医疗诊断等问题,为此,提出一种基于卷积神经网络和分类器的视网膜病理图像自动分类系统。方法 首先,结合现有的视网膜图像的特点,对图像进行去噪、数据扩增、归一化等预处理操作;其次,在AlexNet网络的基础上,在网络的每一个卷积层和全连接层前引入一个批归一化层,得到一个网络层次更复杂的深度卷积神经网络BNnet。BNnet网络用于视网膜图像的特征提取网络,对其训练时采用迁移学习的策略利用ILSVRC2012数据集对BNnet网络进行预训练,再将训练得到的模型迁移到视网膜图像上再学习,提取用于视网膜分类的深度特征;最后,将提取的特征输入一个由全连接层组成的深度分类器将视网膜图像分为正常的视网膜图像、轻微病变的视网膜图像、中度病变的视网膜图像等5类。结果 实验结果表明,本文方法的分类准确率可达0.93,优于传统的直接训练方法,且具有较好的鲁棒性和泛化性。结论 本文提出的视网膜病理图像分类框架有效地避免了人工特征提取和图像分类的局限性,同时也解决了样本数据不足而导致的过拟合问题。 相似文献
4.
小目标检测是针对图像中像素占比少的目标,借助计算机视觉在图像中找到并判断该目标所属类别的目标检测技术。与目前应用较为成熟的大尺度、中尺度目标检测不同,小目标自身存在着语义信息少、覆盖面积小等先天不足,导致小目标的检测效果并不理想,因此如何提高小目标的检测效果依然是计算机视觉领域的一大难题。对近年来国内外小目标检测领域研究成果进行了梳理,以小目标检测技术为核心,对关于小目标的定义、检测难点进行分析;将能有效提高小目标检测精度的方法进行分类汇总,并介绍了各种方法的应用与优缺点;最后对未来小目标检测领域发展趋势进行了预测与展望。 相似文献
5.
针对传统机器学习人工提取特征耗时耗力,并且提取高质量特征存在一定困难等问题,将基于深度学习的方法,首次结合卷积神经网络和概率神经网络,提出了一种新的模型GoogleNet-PNN,其自动学习特征,避免了手动提取特征的繁琐性,而且结合了PNN训练容易、收敛速度快等特点,在肝病分类的实验中取得了较好的效果;并使用了迁移学习的方法,通过在自然图像集的预训练,然后应用到医学图像,避免了因样本不足而出现的过拟合问题,实验结果最终表明识别准确率要优于其他方法,达到了98%的客观识别率。 相似文献
6.
近年来,随着数据量的扩大,计算机性能不断提升,用传统的图像分类方法无法获得大数据下图像分类的高精度准确率,残差网络因其高度准确性和良好收敛性已成为图像分类领域的技术热点,值得深入研究。介绍了残差网络,并从提升分类准确率、减少模型参数量和降低模型计算量三个角度出发,详细讨论了各个变体的内在结构,分析了各个变体的优缺点,给出了各个变体适用场合的建议。从准确率、参数量和计算量三个方面对各个变体的性能进行了直观的对比。提出了残差网络现在面临的挑战和未来的发展方向。 相似文献
7.
一般细粒度图像分类只关注图像局部视觉信息,但在一些问题中图像局部的文本 信息对图像分类结果有直接帮助,通过提取图像文本语义信息可以进一步提升图像细分类效果。 我们综合考虑了图像视觉信息与图像局部文本信息,提出一个端到端的分类模型来解决细粒度 图像分类问题。一方面使用深度卷积神经网络获取图像视觉特征,另一方面依据提出的端到端 文本识别网络,提取图像的文本信息,再通过相关性计算模块合并视觉特征与文本特征,送入 分类网络。最终在公共数据集 Con-Text 上测试该方法在图像细分类中的结果,同时也在 SVT 数据集上验证端到端文本识别网络的能力,均较之前方法获得更好的效果。 相似文献
8.
V. Ulagamuthalvi G. Kulanthaivel A. Balasundaram Arun Kumar Sivaraman 《计算机系统科学与工程》2022,43(1):275-289
One of the fast-growing disease affecting women’s health seriously is breast cancer. It is highly essential to identify and detect breast cancer in the earlier stage. This paper used a novel advanced methodology than machine learning algorithms such as Deep learning algorithms to classify breast cancer accurately. Deep learning algorithms are fully automatic in learning, extracting, and classifying the features and are highly suitable for any image, from natural to medical images. Existing methods focused on using various conventional and machine learning methods for processing natural and medical images. It is inadequate for the image where the coarse structure matters most. Most of the input images are downscaled, where it is impossible to fetch all the hidden details to reach accuracy in classification. Whereas deep learning algorithms are high efficiency, fully automatic, have more learning capability using more hidden layers, fetch as much as possible hidden information from the input images, and provide an accurate prediction. Hence this paper uses AlexNet from a deep convolution neural network for classifying breast cancer in mammogram images. The performance of the proposed convolution network structure is evaluated by comparing it with the existing algorithms. 相似文献
9.
近年来,由于计算机技术的飞速迅猛发展,特别是硬件条件的改善,计算能力不断提高,深层神经网络训练的时间大大缩短,深度残差网络也迅速成为一个新的研究热点.深度残差网络作为一种极深的网络架构,在精度和收敛等方面都展现出了很好的特性.研究者们深入研究其本质并在此基础上提出了很多关于深度残差网络的改进,如宽残差网络,金字塔型残差网络,密集型残差网络,注意力残差网络等等.本文从残差网络的设计出发,分析了不同残差单元的构造方式,介绍了深度残差网络不同的变体.从不同的角度比较了不同网络之间的差异以及这些网络架构在常用图像分类数据集上的性能表现.最后我们对于这些网络进行了总结,并讨论了未来深度残差网络在图像分类领域的一些研究方向. 相似文献
10.
采用计算机视觉原理与神经网络技术的自动化检测方法是计算机检测的新发展,具有非接触性、速度快、效率高、柔性好等优点,在现代产品质量检测中有着广泛的应用前景。该文介绍了基于神经网络与计算机视觉的产品质量检测系统的一般结构,阐述了这种系统的一个实例——玻璃瓶裂纹在线检测系统的实现方法。由于神经网络的应用,使得该检测系统具有良好的自学习、自适应能力,成功地实现了对生产线上玻璃瓶裂纹的快速、精确的检测。 相似文献
11.
12.
由于视觉Transformer结构模型参数量大、浮点计算次数高,使得其难以部署到终端设备上。因为注意力矩阵存在低秩瓶颈,所以模型压缩算法和注意力机制加速算法不能很好地平衡模型参数量、模型推理速度和模型性能之间的关系。为了解决上述问题,本文设计一种轻量级的Vi T-SST模型用于图像分类任务。首先,通过将传统全连接层转换为可分离结构,大幅度降低模型参数量且提高了模型推理速度,保证了注意力矩阵不会因出现低秩而破坏模型表达能力;其次,提出一种基于SVD分解的克罗内克积近似分解法,可以将公开的Vi T-Base模型预训练参数转换至Vi T-Base-SST模型,略微缓解了Vi T模型的过拟合现象并提高了模型精度。在常见公开图片数据集CIFAR系列和Caltech系列上的实验验证了本文方法优于对比方法。 相似文献
13.
单幅图像超分辨率(Super Resolution,SR)重建,是计算机视觉领域的一个经典问题,其目的在于从一个低分辨率图像得到一个高分辨率图像。目前的卷积神经网络重建算法只有三层结构,浅层结构在处理内部结构复杂的数据时,会出现表征能力不足的问题,因此提出了一个基于特征转移的八层卷积神经网络结构来实现图像超分辨率重建。针对不同的测试集,提出的卷积神经网络模型取得了更佳的超分辨率结果,不管是在主观视觉上还是在客观评价指标上均有明显改善,把数据集图像放大3倍时,对于不同算法的对比图像,该算法的峰值信噪比最高,而且在清晰度方面尤其是图像纹理边缘得到了增强。实验结果证明了基于迁移转移的八层卷积神经网络对图像超分辨率重建的有效性,且网络的收敛速度更快,在精细度方面具有更高的优势。 相似文献
14.
针对织物缺陷检测时疵点种类繁多且传统人工检测方法漏检率高的问题,提出了一种基于卷积神经网络的织物表面缺陷分类方法。因卷积神经网络(CNN)训练时参数多、样本量大,且极易陷入过拟合,利用微调卷积神经网络模型Alexnet对织物疵点图像进行特征提取,初始化采用原网络的参数而非随机初始化参数;再针对特定目标下的训练样本对网络参数进行微调;最后利用softmax回归算法进行预测分类。分别用三种方法和两种织物进行测试,结果表明:针对特定目标微调后的Alexnet网络,在两类织物测试中均能达到95%以上的分类准确率。 相似文献
15.
针对以往的前景检测方法对场景信息依赖较多的问题,提出了一种实时的无需迭代更新背景模型的前景检测深度学习模型ForegroundNet。ForegroundNet 首先通过骨干网络从当前图像和辅助图像中提取语义特征,辅助图像为相邻的图像帧或者是自动生成的视频背景图像;然后将提取得到的特征输入到包含短连接的反卷积网络中,使得最终特征图在与输入图像具有相同的大小,并且包含不同尺度的语义及动态特征;最后使用softmax 层进行二值分类,得到最终检测结果。在CDNet 数据集上进行的实验结果表明,相比于当前F 值为0.82 的次优方法,ForegroundNet 能够获得0.94 的F 值,具有更高的检测精度;同时ForegroundNet 检测速度达到123 fps,具有良好的实时性。 相似文献
16.
针对传统工业机器人辨识复杂工件困难、识别度单一等问题,提出一种基于迁移学习的视觉识别与分拣策略。高精度工业相机拍摄到的图片经过HALCON软件图像膨胀、腐蚀等处理之后,导入Pytorch中的神经网络模型,利用迁移学习对目标进行识别分类,最终实现工业机器人智能分拣的目的。实验中,在UR5机器人平台上以形状多变的两种菇类为对象进行迁移学习,进而完成识别及分拣。实验结果表明该策略具备良好的准确性和稳定性。 相似文献
17.
针对卷积神经网络提取特征信息不完整导致图像分类方法分类精度不高等问题,利用深度学习的方法搭建卷积神经网络模型框架,提出一种基于迭代训练和集成学习的图像分类方法。利用数据增强对图像数据集进行预处理操作,在提取图像特征时,采用一种迭代训练卷积神经网络的方式,得到充分有效的图像特征,在训练分类器时,采用机器学习中集成学习的思想。分别在特征提取后训练分类器,根据各分类器贡献的大小,赋予它们不同的权重值,取得比单个分类器更好的性能,提高图像分类的精度。该方法在Stanford Dogs、UEC FOOD-100和CIFAR-100数据集上的实验结果表明了其较好的分类性能。 相似文献
18.
单幅图像超分辨率(Single image super-resolution, SISR)重建是计算机视觉领域上的一个重要问题, 在安防视频监控、飞机航拍以及卫星遥感等方面具有重要的研究意义和应用价值. 近年来, 深度学习在图像分类、检测、识别等诸多领域中取得了突破性进展, 也推动着图像超分辨率重建技术的发展. 本文首先介绍单幅图像超分辨率重建的常用公共图像数据集; 然后, 重点阐述基于深度学习的单幅图像超分辨率重建方向的创新与进展; 最后, 讨论了单幅图像超分辨率重建方向上存在的困难和挑战, 并对未来的发展趋势进行了思考与展望. 相似文献
19.
SOM Ensemble-Based Image Segmentation 总被引:1,自引:0,他引:1
Image segmentation plays an important role in image analysis and image understanding. In this paper, an image segmentation method based on ensemble of SOM neural networks is proposed, which clusters the pixels in an image according to color and spatial features with many SOM neural networks, and then combines the clustering results to give the final segmentation. Experimental results show that the proposed method performs better than some existing clustering-based image segmentation methods. 相似文献