共查询到20条相似文献,搜索用时 15 毫秒
1.
凝聚态物理中拓扑相变和拓扑物态的发现,获得了2016年度诺贝尔物理学奖。文章系统介绍了凝聚态物理中拓扑性的起源,并简要介绍了目前凝聚态物理中发现的主要几类拓扑态:拓扑绝缘体、量子反常霍尔效应、拓扑晶体绝缘体和拓扑半金属。 相似文献
2.
本文研究了各向同性square-octagon晶格在内禀自旋轨道耦合、Rashba自旋轨道耦合和交换场作用下的拓扑相变,同时引入陈数和自旋陈数对系统进行拓扑分类.系统在自旋轨道耦合和交换场的影响下会出现许多拓扑非平庸态,包括时间反演对称破缺的量子自旋霍尔态和量子反常霍尔态.特别的是,在时间反演对称破缺的量子自旋霍尔效应中,无能隙螺旋边缘态依然能够完好存在.调节交换场或者填充因子的大小会导致系统发生从时间反演对称破缺的量子自旋霍尔态到自旋过滤的量子反常霍尔态的拓扑相变.边缘态能谱和自旋谱的性质与陈数和自旋陈数的拓扑刻画完全一致.这些研究成果为自旋量子操控提供了一个有趣的途径. 相似文献
3.
铁基超导体和拓扑量子材料是近年来凝聚态物理两个重要的前沿研究方向.铁基超导体中是否能衍生出非平庸的拓扑现象是一个非常有意义的问题.本文从晶体对称性、布里渊区高对称点附近的有效模型以及自旋轨道耦合相互作用三个方面具体分析了铁基超导的电子结构的基本特点.在此基础上,重点阐述铁基超导的正常态、临近超导的长程有序态以及超导态中非平庸的拓扑量子态是如何衍生的;具体介绍了相关的理论模型以及结果,回顾了相关的实验进展,展望了该领域的发展前景. 相似文献
4.
5.
随着拓扑绝缘体的发现, 材料拓扑物性的研究成为凝聚态物理研究的热点领域. 本文基于第一性原理计算, 研究了化合物Ge2X2Te5 (X=Sb, Bi) 的块体结构和二维单层和双层薄膜结构的拓扑物性, 以及单双层薄膜在垂直方向单轴压力下的拓扑量子相变. 研究发现, A型原子序列排列的这两种化合物都是拓扑绝缘体, 其单层薄膜都是普通金属, 而双层薄膜都是拓扑金属, 单层和双层薄膜在单轴加压过程中都没有发生拓扑量子相变; 这两种化合物的B型原子序列的晶体是普通绝缘体, 其所对应的薄膜, Ge2Sb2Te5单层是普通金属, 双层薄膜和Ge2Bi2Te5的单层和双层薄膜均为普通绝缘体, 但是在单轴加压过程中B 型原子序列所对应的单层和双层薄膜都转变为拓扑金属. 相似文献
6.
We study two-legged spin-1 ladder systems with D2×σ symmetry group, where D2 is discrete spin rotational symmetry and σ means interchain reflection symmetry. The system has one trivial phase and seven nontrivial symmetry protected topological (SPT) phases. We construct Hamiltonians to realize all of these SPT phases and study the phase transitions between them. Our numerical results indicate that there is no direct continuous transition between any two SPT phases we studied. We interpret our results via topological nonlinear sigma model effective field theory, and further conjecture that generally there is no direct continuous transition between two SPT phases in one dimension if the symmetry group is discrete at all length scales. 相似文献
7.
8.
Jiabin Li Pan Zhou Zhengchun Zou Rui Tan Lizhong Sun Kaiwang Zhang 《physica status solidi b》2020,257(9):2000010
9.
We investigate the topological properties of a ladder model of the dimerized Kitaev superconductor chains.The topological class of the system is determined by the relative phase θ between the inter-and intra-chain superconducting pairing.One topological class is the class BDI characterized by the Z index,and the other is the class D characterized by the Z_2 index.For the two different topological classes,the topological phase diagrams of the system are presented by calculating two different topological numbers,i.e.,the Z index winding number W and the Z_2 index Majorana number M,respectively.In the case of θ=0,the topological class belongs to the class BDI,multiple topological phase transitions accompanying the variation of the number of Majorana zero modes are observed.In the case of θ = π/2 it belongs to the class D.Our results show that for the given value of dimerization,the topologically nontrivial and trivial phases alternate with the variation of chemical potential. 相似文献
10.
We propose a scheme to investigate the topological phase transition and the topological state transfer based on the small optomechanical lattice under the realistic parameters regime.We find that the optomechanical lattice can be equivalent to a topologically nontrivial Su-Schrieffer Heeger(SSH)model via designing the effective optomechanical coupling.Especially,the optomechanical lattice experiences the phase transition between topologically nontrivial SSH phase and topologically trivial SSH phase by controlling the decay of the cavity field and the opto mechanical coupling.We stress that the to pological phase transition is mainly induced by the decay of the cavity field,which is counter-intuitive since the dissipation is usually detrimental to the system.Also,we investigate the photonic state transfer between the two cavity fields via the topologically protected edge channel based on the small optomechanical lattice.We find that the quantum st ate transfer assisted by the topological zero energy mode can be achieved via implying the external lasers with the periodical driving amplitudes into the cavity fields.Our scheme provides the fundamental and the insightful explanations towards the mapping of the photonic topological insulator based on the micro-nano optomechanical quantum optical platform. 相似文献
11.
12.
Topological physics in optical lattices have attracted much attention in recent years. The nonlinear effects on such optical systems remain well-explored and a large amount of progress has been achieved. In this paper, under the mean-field approximation for a nonlinearly optical coupled boson–hexagonal lattice system, we calculate the nonlinear Dirac cone and discuss its dependence on the parameters of the system. Due to the special structure of the cone, the Berry phase (two-dimensional Zak phase) acquired around these Dirac cones is quantized, and the critical value can be modulated by interactions between different lattices sites. We numerically calculate the overall Aharonov-Bohm (AB) phase and find that it is also quantized, which provides a possible topological number by which we can characterize the quantum phases. Furthermore, we find that topological phase transition occurs when the band gap closes at the nonlinear Dirac points. This is different from linear systems, in which the transition happens when the band gap closes and reopens at the Dirac points. 相似文献
13.
The present study pertains to the trilayer graphene in the presence of spin orbit coupling to probe the quantum spin/valley Hall effect. The spin Chern-number C_s for energy-bands of trilayer graphene having the essence of intrinsic spin–orbit coupling is analytically calculated. We find that for each valley and spin, C_s is three times larger in trilayer graphene as compared to single layer graphene. Since the spin Chern-number corresponds to the number of edge states,consequently the trilayer graphene has edge states, three times more in comparison to single layer graphene. We also study the trilayer graphene in the presence of both electric-field and intrinsic spin–orbit coupling and investigate that the trilayer graphene goes through a phase transition from a quantum spin Hall state to a quantum valley Hall state when the strength of the electric field exceeds the intrinsic spin coupling strength. The robustness of the associated topological bulk-state of the trilayer graphene is evaluated by adding various perturbations such as Rashba spin–orbit(RSO) interaction αR, and exchange-magnetization M. In addition, we consider a theoretical model, where only one of the outer layers in trilayer graphene has the essence of intrinsic spin–orbit coupling, while the other two layers have zero intrinsic spin–orbit coupling.Although the first Chern number is non-zero for individual valleys of trilayer graphene in this model, however, we find that the system cannot be regarded as a topological insulator because the system as a whole is not gaped. 相似文献
14.
15.
利用基于张量网络表示的矩阵乘积态算法以及无限虚时间演化块抽取方法,本文研究了一维无限格点自旋1的键交替反铁磁XXZ海森伯模型中的量子相变.分别计算了系统的von Neumann熵、单位格点保真度和序参量,从而得到了系统随键交替强度的变化从拓扑有序Néel相到局域有序二聚化相的量子相变点.我们用矩阵乘积态方法拟合出了相变的中心荷c?0.5,表明此相变属于二维经典的Ising普适类.另外,通过对拓扑Néel序的数值拟合,我们得到了相变点处的特征临界指数β′=0.236和γ′=0.838. 相似文献
16.
Understanding the physical significance and probing the global invariants characterizing quantum topological phases in extended systems is a main challenge in modern physics with major impact in different areas of science. Here, a quantum‐information‐inspired probing method is proposed where topological phase transitions are revealed by a non‐Markovianity quantifier. The idea is illustrated by considering the decoherence dynamics of an external read‐out qubit that probes a Su–Schrieffer–Heeger (SSH) chain with either pure dephasing or dissipative coupling. Qubit decoherence features and non‐Markovianity measure clearly signal the topological phase transition of the SSH chain. 相似文献
17.
J.B.A. Hamer R. Daou S.
zcan N.D. Mathur D.J. Fray K.G. Sandeman 《Journal of magnetism and magnetic materials》2009,321(21):3535
We propose the phase diagram of a new pseudo-ternary compound, CoMnGe1-xSnx, in the range x0.1. Our phase diagram is a result of magnetic and calorimetric measurements. We find that the separate magnetic and structural transitions in CoMnGe are tuned together as the level of Sn substitution is increased. We demonstrate the appearance of a hysteretic magnetostructural phase transition in the range x=0.04–0.055, similar to that observed in CoMnGe under hydrostatic pressure. From magnetisation measurements, we show that the isothermal entropy change associated with the magnetostructural transition can be as high as in a field of 1 T. However, the large thermal hysteresis in this transition () will limit its straightforward use in a magnetocaloric device. 相似文献
18.
电子的量子自旋霍尔效应的发现推进了当今凝聚态物理学的发展,它是一种电子自旋依赖的具有量子行为的输运效应.近年来,大量的理论和实验研究表明,描述电磁波场运动规律的麦克斯韦方程组内禀了光的量子自旋霍尔效应,存在于界面的倏逝波表现出强烈的自旋与动量关联性.得益于新兴的光学材料:超构材料(metamaterials)的发展,不仅能够任意设定光学参数,同时也能引入很多复杂的自旋-轨道耦合机理,让我们能够更加清晰地了解和验证其中的物理机理.本文对超构材料中量子自旋霍尔效应做了简要的介绍,内容主要包括真空中光的量子自旋霍尔效应的物理本质、电单负和磁单负超构材料能带反转导致的不同拓扑相的界面态、拓扑电路系统中光量子自旋霍尔效应等. 相似文献
19.
We propose a scheme to realize the SU(3)spin-orbit coupled three-component fermions in an one-dimensional optical lattice.The topological properties of the single-particle Hamiltonian are studied by calculating the Berry phase,winding number and edge state.We also investigate the effects of the interaction on the ground-state topology of the system,and characterize the interaction-induced topological phase transitions,using a state-of-the-art density-matrix renormalization-group numerical method.Finally,we show the typical features of the emerging quantum phases,and map out the many-body phase diagram between the interaction and the Zeeman field.Our results establish a way for exploring novel quantum physics induced by the SOC with SU(N)symmetry. 相似文献
20.
The low energy behavior of the Kondo necklace model with an aperiodic exchange modulation is studied using a representation for the localized and conduction electron spins, in terms of local Kondo singlet and triplet operators at zero and finite temperature for arbitrary d dimensions. A decoupling scheme on the double time Green's functions is used to find the dispersion relation for the excitations of the system. We determined the dependence between the chemical aperiodic exchange modulation and the spin gap in 1d, 2d and 3d, at zero temperature and in the paramagnetic side of the phase diagram. On the other hand, at low but finite temperatures, the line of Néel transitions in the antiferromagnetic phase is calculated in function of the aperiodic exchange modulation. 相似文献