首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
This paper synthesizes data on aerosol (particulate matter, PM) physical and chemical characteristics, which were obtained over the past decade in aerosol research and monitoring activities at more than 60 natural background, rural, near-city, urban, and kerbside sites across Europe. The data include simultaneously measured PM10 and/or PM2.5 mass on the one hand, and aerosol particle number concentrations or PM chemistry on the other hand. The aerosol data presented in our previous works (Van Dingenen et al., 2004, Putaud et al., 2004) were updated and merged to those collected in the framework of the EU supported European Cooperation in the field of Scientific and Technical action COST633 (Particulate matter: Properties related to health effects). A number of conclusions from our previous studies were confirmed. There is no single ratio between PM2.5 and PM10 mass concentrations valid for all sites, although fairly constant ratios ranging from 0.5 to 0.9 are observed at most individual sites. There is no general correlation between PM mass and particle number concentrations, although particle number concentrations increase with PM2.5 levels at most sites. The main constituents of both PM10 and PM2.5 are generally organic matter, sulfate and nitrate. Mineral dust can also be a major constituent of PM10 at kerbside sites and in Southern Europe. There is a clear decreasing gradient in SO42? and NO3? contribution to PM10 when moving from rural to urban to kerbside sites. In contrast, the total carbon/PM10 ratio increases from rural to kerbside sites. Some new conclusions were also drawn from this work: the ratio between ultrafine particle and total particle number concentration decreases with PM2.5 concentration at all sites but one, and significant gradients in PM chemistry are observed when moving from Northwestern, to Southern to Central Europe. Compiling an even larger number of data sets would have further increased the significance of our conclusions, but collecting all the aerosol data sets obtained also through research projects remains a tedious task.  相似文献   

3.
4.
Leaf pack processing and invertebrate colonization for bioassessment of metals pollution in a stream also impacted by a dam were examined. Differences in leaf breakdown rates at sites upstream and downstream of a metals point source were not detected. However, multivariate and logistic regression techniques indicated there were differences in aquatic macroinvertebrate assemblages that colonized leaf packs above and below the metal inflow. Development of a logistic regression model allowed for prediction of leaf pack location from indicator taxa in the leaf pack invertebrate community. Collector-gatherers, rather than shredders, were the most important predictors of whether leaf packs were located above or below the metal inflow, and were perhaps related to algae growing on leaf packs and/or fine particulate organic matter quality. Biotic structure, in this study, provided more information for evaluating pollution impacts than did measurement of leaf breakdown rates.  相似文献   

5.
Data from a large-scale foliar survey were used to calculate the extent to which N and S deposition determined the mineral composition of Scots pine and Norway spruce needles in Finland. Foliar data were available from 367 needle samples collected on 36 plots sampled almost annually between 1987 and 2000. A literature study of controlled experiments revealed that acidifying deposition mediates increasing N and S concentrations, and decreasing Mg:N and Ca:Al ratios in the needles. When this fingerprint for N and S elevated deposition on tree foliage was observed simultaneously with increased N and S inputs, it was considered sufficient evidence for assuming that acidifying deposition had altered the mineral composition of tree needles on that plot in the given year. Evidence for deposition-induced changes in the mineral composition of tree foliage was calculated on the basis of a simple frequency model. In the late eighties the evidence was found on 43% of the Norway spruce and 27% of Scots pine plots. The proportion of changed needle mineral composition decreased to below 8% for both species in the late nineties.  相似文献   

6.
Lippold H  Gottschalch U  Kupsch H 《Chemosphere》2008,70(11):1979-1986
Mobilization of polycyclic aromatic hydrocarbons (PAH) by surfactants, present at contaminated sites or deliberately introduced for remediation purposes, is inevitably associated with the influence of humic substances, which are ubiquitous in natural systems. Therefore, the solubilizing effects of anthropogenic and natural amphiphiles must be considered in their combined action since synergistic or antagonistic effects may be expected, for instance, as a consequence of mixed micellization.

In this paper, solubilization of 14C-labeled pyrene in single-component and mixed solutions of surfactants and humic acid (coal-derived) was investigated up to the micellar concentration range. At low concentrations, antagonistic effects were observed for systems with cationic as well as anionic surfactants. Solubility enhancements in the presence of humic acid were canceled on addition of a cationic surfactant (DTAB) since charge compensation at humic colloids entailed precipitation. Solubility was also found to be decreased in the presence of an anionic surfactant (SDS), which was attributed to a competitive effect in respect of pyrene–humic interaction. This explanation is based on octanol–water partitioning experiments with radiolabeled humic acid, yielding evidence of different interaction modes between humic colloids and cationic/anionic surfactants. At higher concentrations, the effects of humic acid and SDS were found to be additive. Thus, a formation of mixed micelles is very unlikely, which was confirmed by size exclusion chromatography of mixed systems. It can be concluded that remediation measures on the basis of micellar solubilization are not significantly affected by the presence of natural amphiphilic compounds.  相似文献   


7.
Environmental Science and Pollution Research - Two field trials were carried out in two successive agricultural seasons to study the possibility of using silicon (Si) and Moringa seed extract (MSE)...  相似文献   

8.
Environmental Science and Pollution Research - Characteristics of pulverized coals have significant influence on the spontaneous combustion and explosion processes. This paper presents an...  相似文献   

9.
Animal populations are exposed to large-scale anthropogenic impact from e.g. climate change, habitat alteration and supplemental stocking. All of these may affect body condition in wintering dabbling ducks, which in turn may affect an individual’s survival and reproductive success. The aim of this study was to assess whether there have been morphometric changes in Mallard (Anas platyrhynchos) and Teal (Anas crecca) over the last 30 years at a major wintering site. Body mass and condition increased from the 1950s–1960s to the 2000s in both species. The increase in body mass amounted to as much as 11.7%, with no corresponding change in body size. Improved body condition was maintained from early to mid-winter, but then converged with historical values for late winter. Our interpretation is that increasingly benign ambient winter conditions permit ducks to maintain better energetic “safety margins” throughout winter, and that converging spring departure values may be related to evolutionary flight energetic optima. The observed changes are consistent with large-scale climate amelioration and local/regional habitat improvement (both anthropogenic).  相似文献   

10.

Background, aim, and scope

We strive to predict consequences of genetically modified plants (GMPs) being cultivated openly in the environment, as human and animal health, biodiversity, agricultural practise and farmers’ economy could be affected. Therefore, it is unfortunate that the risk assessment of GMPs is burdened by uncertainty. One of the reasons for the uncertainty is that the GMPs are interacting with the ecosystems at the release site thereby creating variability. This variability, e.g. in gene flow, makes consequence analysis difficult. The review illustrates the great uncertainty of results from gene-flow analysis.

Main features

Many independent experiments were performed on the individual processes in gene flow. The results comprise information both from laboratory, growth chambers and field trials, and they were generated using molecular or phenotypic markers and analysis of fitness parameters. Monitoring of the extent of spontaneous introgression in natural populations was also performed. Modelling was used as an additional tool to identify key parameters in gene flow.

Results

The GM plant may affect the environment directly or indirectly by dispersal of the transgene. Magnitude of the transgene dispersal will depend on the GM crop, the agricultural practise and the environment of the release site. From case-to-case these three factors provide a variability that is reflected in widely different likelihoods of transgene dispersal and fitness of introgressed plants. In the present review, this is illustrated through a bunch of examples mostly from our own research on oilseed rape, Brassica napus. In the Brassica cases, the variability affected all five main steps in the process of gene dispersal. The modelling performed suggests that in Brassica, differences in fitness among plant genome classes could be a dominant factor in the establishment and survival of introgressed populations.

Discussion

Up to now, experimental analyses have mainly focused on studying the many individual processes of gene flow. This can be criticised, as these experiments are normally carried out in widely different environments and with different genotypes, and thus providing bits and pieces difficult to assemble. Only few gene-flow studies have been performed in natural populations and over several plant generations, though this could give a more coherent and holistic view.

Conclusion

The variability inherent in the processes of gene flow in Brassica is apparent and remedies are wished for. One possibility is to expose the study species to additional experiments and monitoring, but this is costly and will likely not cover all possible scenarios. Another remedy is modelling gene flow. Modelling is a valuable tool in identifying key factors in the gene-flow process for which more knowledge is needed, and identifying parameters and processes which are relatively insensitive to change and therefore require less attention in future collections of data. But the interdependence between models and experimental data is extensive, as models depend on experimental data for their development or testing.

Recommendations

More and more transgenic varieties are being grown worldwide harbouring genes that might potentially affect the environment (e.g. drought tolerance, salt tolerance, disease tolerance, pharmaceutical genes). This calls for a thorough risk assessment. However, in Brassica, the limited and uncertain knowledge on gene flow is an obstacle to this. Modelling of gene flow should be optimised, and modelling outputs verified in targeted field studies and at the landscape level. Last but not least, it is important to remember that transgene flow in itself is not necessarily a thread, but it is the consequences of gene flow that may jeopardise the ecosystems and the agricultural production. This emphasises the importance of consequence analysis of genetically modified plants.  相似文献   

11.
The reproductive cycle of bivalves is regulated by several natural environmental factors but exposure to chemical pollutants can also interfere and may result in advanced or delayed spawning season. To our knowledge, the gametogenic cycle of the suspension-feeder bivalve Donax trunculus has not yet been used as biomonitoring tool in ecotoxicological surveys. The aim of this study was to examine over a year physiological reproductive endpoints (sex-ratio, gametogenic and energy reserve cycles) and biological indices (condition index, allometry) in D. trunculus originating from two sites differing by their level of contamination. Specimens were collected bimonthly from November 2008 to October 2009 from a polluted site (Radès Méliane) and a comparatively reference site (Sidi Jehmi) in the Gulf of Tunis (Tunisia). Five stages were depicted by histological examination of gonads: undifferentiated, developing, mature, spawn and spent. Differences in the gametogenic cycle according to the site of origin of bivalves were observed. The spawning period began in March and was maximum in May in bivalves from both sites, but the percentage of spawning animals was higher in the polluted site vs the reference site. The spawning period was shorter in animals from the polluted site comparatively to the reference site. Energy reserves (glycogen, lipids) were higher in March and May comparatively to the other studied periods in bivalves from both sites. Lower energy reserves levels were usually observed in animals from the polluted site compared to the reference site. Seasonal variations of the condition index were associated to the reproductive and nutritive status of bivalves. Differences in allometry were depicted between bivalves from both studied sites. If we try to link allometry, energy reserves and reproduction, it can be hypothesized that for bivalves from the reference site, energy reserves are allocated to gametogenesis and length growth. For bivalves from the polluted site, energy reserves could be devoted to tolerance to chemical stress and to reproductive processes. Therefore, D. trunculus appears as a suitable sentinel species for the assessment of the ecotoxicological risk of contaminants such as endocrine disruptors.  相似文献   

12.
Ozone concentrations were measured at two (urban and a rural) sites near the city of Málaga (Spain). The aim of this study was to determine the daily, monthly and seasonal variation patterns of ozone concentrations at both sites and to study the possible regional influences. The daily variations mostly have the usual features with the afternoon maximum and the night minimum being more pronounced in the urban area. The average monthly concentrations throughout the year start to increase in March reaching their maximum values in July for the urban site. However, in the rural area, the monthly variations are smaller reaching their maximum value in June. The hourly evolution of the ozone concentrations in both sampling sites is well defined in spring and summer and not so well defined in autumn and winter. Taking into account the four seasons, the rural concentrations are higher than the urban ones. Summer is the season when there are similar concentrations at both sampling sites. Average hourly summer afternoon ozone for the hours 12:00-20:00 LST exceeded the 110 microg m(-3) European Union guidelines for human health for 8 h ozone exposure at the urban and rural sites.  相似文献   

13.
This study, based on a greenhouse pot culture experiment conducted with 15-day-old rapeseed (Brassica campestris L. cv. Pusa Gold; family Brassicaceae) and moong bean (Vigna radiata L. Wilczek cv. Pusa Ratna; family Fabaceae) plants treated with cadmium (Cd) concentrations (0, 50, and 100 mg kg?1 soil), investigates their potential for Cd accumulation and tolerance, and dissects the underlying basic physiological/biochemical mechanisms. In both species, plant dry mass decreased, while Cd concentration of both root and shoot increased with increase in soil Cd. Roots harbored a higher amount of Cd (vs. shoot) in B. campestris, while the reverse applied to V. radiata. By comparison, root Cd concentration was higher in B. campestris than in V. radiata. The high Cd concentrations in B. campestris roots and V. radiata shoots led to significant elevation in oxidative indices, as measured in terms of electrolyte leakage, H2O2 content, and lipid peroxidation. Both plants displayed differential adaptation strategies to counteract the Cd burden-caused anomalies in their roots and shoots. In B. campestris, increasing Cd burden led to a significantly decreased reduced glutathione (GSH) content but a significant increase in activities of GSH reductase (GR), GSH peroxidase (GPX), and GSH sulfotransferase (GST). However, in V. radiata, increasing Cd burden caused significant increase in GSH content and GR activity, but a significant decline in activities of GPX and GST. Cross talks on Cd burden of tissues and the adapted Cd tolerance strategies against Cd burden-accrued toxicity indicated that B. campestris and V. radiata are good Cd stabilizer and Cd extractor, respectively, wherein a fine tuning among the major components (GR, GPX, GST, GSH) of the GSH redox system helped the plants to counteract differentially the Cd load-induced anomalies in tissues. On the whole, the physiological/biochemical characterization of the B. campestris and V. radiata responses to varying Cd concentrations can be of great help in elaborating the innovative plant-based remediation technologies for metal/metalloid-contaminated sites.  相似文献   

14.
This paper compares the removal performances of two complete wastewater treatment plants (WWTPs) for all priority substances listed in the Water Framework Directive and additional compounds of interest including flame retardants, surfactants, pesticides, and personal care products (PCPs) (n?=?104). First, primary treatments such as physicochemical lamellar settling (PCLS) and primary settling (PS) are compared. Similarly, biofiltration (BF) and conventional activated sludge (CAS) are then examined. Finally, the removal efficiency per unit of nitrogen removed of both WWTPs for micropollutants is discussed, as nitrogenous pollution treatment results in a special design of processes and operational conditions. For primary treatments, hydrophobic pollutants (log K ow?>?4) are well removed (>70 %) for both systems despite high variations of removal. PCLS allows an obvious gain of about 20 % regarding pollutant removals, as a result of better suspended solids elimination and possible coagulant impact on soluble compounds. For biological treatments, variations of removal are much weaker, and the majority of pollutants are comparably removed within both systems. Hydrophobic and volatile compounds are well (>60 %) or very well removed (>80 %) by sorption and volatilization. Some readily biodegradable molecules are better removed by CAS, indicating a better biodegradation. A better sorption of pollutants on activated sludge could be also expected considering the differences of characteristics between a biofilm and flocs. Finally, comparison of global processes efficiency using removals of micropollutants load normalized to nitrogen shows that PCLS?+?BF is as efficient as PS?+?CAS despite a higher compactness and a shorter hydraulic retention time (HRT). Only some groups of pollutants seem better removed by PS?+?CAS like alkylphenols, flame retardants, or di-2-ethylhexyl phthalate (DEHP), thanks to better biodegradation and sorption resulting from HRT and biomass characteristics. For both processes, and out of the 68 molecules found in raw water, only half of them are still detected in the water discharged, most of the time close to their detection limit. However, some of them are detected at higher concentrations (>1 μg/L and/or lower than environmental quality standards), which is problematic as they represent a threat for aquatic environment.  相似文献   

15.
Stream sediments from the mining and smelting district of Príbram, Czech Republic, were studied to determine the degree, sources and dispersal of metal contamination using a combination of bulk metal and mineralogical determinations, sequential extractions and Pb isotopic analyses. The highest metal concentrations were found 3-4 km downstream from the main polymetallic mining site (9800 mg Pb kg(-1), 26 039 mg Zn kg(-1), 316.4 mg Cd kg(-1), 256.9 mg Cu kg(-1)). The calculated enrichment factors (EFs) confirmed the extreme degree of contamination by Pb, Zn and Cd (EF>40). Lead, Zn and Cd are bound mainly to Fe oxides and hydroxides. In the most contaminated samples Pb is also present as Pb carbonates and litharge (PbO). Lead isotopic analysis indicates that the predominant source of stream sediment contamination is historic Pb-Ag mining and primary Pb smelting (206Pb/207Pb=1.16), while the role of secondary smelting (car battery processing) is negligible.  相似文献   

16.
Agra, one of the oldest cities “World Heritage site”, and Delhi, the capital city of India are both located in the border of Indo-Gangetic Plains (IGP) and heavily loaded with atmospheric aerosols due to tourist place, anthropogenic activities, and its topography, respectively. Therefore, there is need for monitoring of atmospheric aerosols to perceive the scenario and effects of particles over northern part of India. The present study was carried out at Agra (AGR) as well as Delhi (DEL) during winter period from November 2011 to February 2012 of fine particulate (PM2.5: d?<?2.5 μm) as well as associated carbonaceous aerosols. PM2.5 was collected at both places using medium volume air sampler (offline measurement) and analyzed for organic carbon (OC) and elemental carbon (EC). Also, simultaneously, black carbon (BC) was measured (online) at DEL. The average mass concentration of PM2.5 was 165.42?±?119.46 μg m?3 at AGR while at DEL it was 211.67?±?41.94 μg m?3 which is ~27 % higher at DEL than AGR whereas the BC mass concentration was 10.60 μg m?3. The PM2.5 was substantially higher than the annual standard stipulated by central pollution control board and United States Environmental Protection Agency standards. The average concentrations of OC and EC were 69.96?±?34.42 and 9.53?±?7.27 μm m?3, respectively. Total carbon (TC) was 79.01?±?38.98 μg m?3 at AGR, while it was 50.11?±?11.93 (OC), 10.67?±?3.56 μg m?3 (EC), and 60.78?±?14.56 μg m?3 (TC) at DEL. The OC/EC ratio was 13.75 at (AGR) and 5.45 at (DEL). The higher OC/EC ratio at Agra indicates that the formation of secondary organic aerosol which emitted from variable primary sources. Significant correlation between PM2.5 and its carbonaceous species were observed indicating similarity in sources at both sites. The average concentrations of secondary organic carbon (SOC) and primary organic carbon (POC) at AGR were 48.16 and 26.52 μg m?3 while at DEL it was 38.78 and 27.55 μg m?3, respectively. In the case of POC, similar concentrations were observed at both places but in the case of SOC higher over AGR by 24 in comparison to DEL, it is due to the high concentration of OC over AGR. Secondary organic aerosol (SOA) was 42 % higher at AGR than DEL which confirms the formation of secondary aerosol at AGR due to rural environment with higher concentrations of coarse mode particles. The SOA contribution in PM2.5 was also estimated and was ~32 and 12 % at AGR and DEL respectively. Being high loading of fine particles along with carbonaceous aerosol, it is suggested to take necessary and immediate action in mitigation of the emission of carbonaceous aerosol in the northern part of India.  相似文献   

17.
The general objective of this work was to develop a monitoring and management model for aquatic plants that could be used in reservoir cascades in Brazil, using the reservoirs of AES-Tietê as a study case. The investigations were carried out at the reservoirs of Barra-Bonita, Bariri, Ibitinga, Promiss?o, and Nova-Avanhandava, located in the Tietê River Basin; Agua Vermelha, located in the Grande River Basin; Caconde, Limoeiro, and Euclides da Cunha, which are part of the Pardo River Basin; and the Mogi-Gua?u reservoir, which belongs to the Mogi-Gua?u River basin. The main products of this work were: development of techniques using satellite-generated images for monitoring and planning aquatic plant control; planning and construction of a boat to move coating plant masses and an airboat equipped with a DGPS navigation and application flow control system. Results allowed to conclude that the occurrence of all types of aquatic plants is directly associated with sedimentation process and, consequently, with nutrient and light availability. Reservoirs placed at the beginning of cascades are more subject to sedimentation and occurrence of marginal, floating and emerged plants, and are the priority when it comes to controlling these plants, since they provide a supply of weeds for the other reservoirs. Reservoirs placed downstream show smaller amounts of water-suspended solids, with greater transmission of light and occurrence of submerged plants.  相似文献   

18.
When plants are observed under a low dose of ozone, some physiological and metabolic shifts occur. Barring extreme injury such as tissue damage or stomata closure, most of these disruptive changes are likely to have been initiated at the level of gene expression. The belief is oxidative products formed in ozone exposed leaves, e.g. hydrogen peroxide, are responsible for much of the biochemical adjustments. The first line of defense is a range of antioxidants, such as ascorbate and glutathione, but if this defense is overwhelmed, subsequent actions occur, similar to systemic acquired resistance or general wounding. Yet there are seemingly unrelated metabolic responses which are also triggered, such as early senescence. We discuss here the current understanding of gene control and signal transduction/control in order to increase our comprehension of how ozone alters the basic metabolism of plants and how plants counteract or cope with ozone.  相似文献   

19.
Secondary pest outbreak is a counterintuitive ecological backlash of pesticide use in agriculture that takes place with the increase in abundance of a non-targeted pest species after pesticide application against a targeted pest species. Although the phenomenon was well recognized, its alternative causes are seldom considered. Outbreaks of the southern red mite Oligonychus ilicis are frequently reported in Brazilian coffee farms after the application of pyrethroid insecticides against the coffee leaf miner Leucoptera coffeella. Selectivity favoring the red mite against its main predatory mites is generally assumed as the outbreak cause, but this theory has never been tested. Here, we assessed the toxicity (and thus the selectivity) of deltamethrin against both mite species: the southern red mite and its phytoseid predator Amblyseius herbicolus. Additionally, behavioral avoidance and deltamethrin-induced hormesis were also tested as potential causes of red mite outbreak using free-choice behavioral walking bioassays with the predatory mite and life-table experiments with both mite species, respectively. Lethal toxicity bioassays indicated that the predatory mite was slightly more susceptible than its prey (1.5×), but in more robust demographic bioassays, the predator was three times more tolerant to deltamethrin than its prey, indicating that predator susceptibility to deltamethrin is not a cause of the reported outbreaks. The predator did not exhibit behavioral avoidance to deltamethrin; however insecticide-induced hormesis in the red mite led to its high population increase under low doses, which was not observed for the predatory mite. Therefore, deltamethrin-induced hormesis is a likely cause of the reported red mite outbreaks.  相似文献   

20.
Mercury (Hg) is a toxic element that is emitted to the atmosphere through human activities, mainly fossil fuel combustion. Hg accumulations in soil are associated with atmospheric deposition, while coal-burning power plants remain the most important source of anthropogenic mercury emissions. In this study, we analyzed the Hg concentration in the topsoil of the Kozani–Ptolemais basin where four coal-fired power plants (4,065 MW) run to provide 50 % of electricity in Greece. The study aimed to investigate the extent of soil contamination by Hg using geostatistical techniques to evaluate the presumed Hg enrichment around the four power plants. Hg variability in agricultural soils was evaluated using 276 soil samples from 92 locations covering an area of 1,000 km2. We were surprised to find a low Hg content in soil (range 1–59 μg kg?1) and 50 % of samples with a concentration lower than 6 μg kg?1. The influence of mercury emissions from the four coal-fired power plants on soil was poor or virtually nil. We associate this effect with low Hg contents in the coal (1.5–24.5 μg kg?1) used in the combustion of these power plants (one of the most Hg-poor in the world). Despite anthropic activity in the area, we conclude that Hg content in the agricultural soils of the Kozani–Ptolemais basin is present in low concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号