首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this paper is to develop independent and systematic criteria for assessing CCS policy in terms of its level of policy integration. We believe that we should assess CCS policy in terms of the distance to an ideal integrated CCS policy in order to keep track of its trajectory toward sustainable development. After reviewing the existing literature of environmental policy integration, an assessment framework for integrated CCS policy is developed based on Arild Underdal's notion of ‘integrated policy’ then, its usefulness is demonstrated by applying it to CCS policies in Japan and Norway. In the final part, we summarize the findings of the cases and conclude with some observations regarding explanatory factors of the difference in terms of the achieved level of policy integration between Japan and Norway's CCS policies, and some policy implications derived from the analysis based on the framework.  相似文献   

2.
With the publication of the IPCC Special Report on Carbon dioxide Capture and Storage (CCS), CCS has emerged as a focal issue in international climate diplomacy and energy collaboration. This paper has two goals. The first goal is to map CCS activities in and among various types of intergovernmental organisations; the second goal is to apply International Relations (IR) theories to explain the growing diversity, overlap and fragmentation of international organisations dealing with CCS. Which international organisations embrace CCS, and which refrain from discussing it at all? What role do these institutions play in bringing CCS forward? Why is international collaboration on CCS so fragmented and weak? We utilise realism, liberal institutionalism and constructivism to provide three different interpretations of the complex global landscape of CCS governance in the context of the similarly complicated architecture of global climate policy. A realist account of CCS's fragmented international politics is power driven. International fossil fuel and energy organisations, dominated by major emitter states, take an active role in CCS. An interest-based approach, such as liberal institutionalism, claims that CCS is part of a “regime complex” rather than an integrated, hierarchical, comprehensive and international regime. Such a regime complex is exemplified by the plethora of international organisations with a role in CCS. Finally, constructivism moves beyond material and interest-based interpretations of the evolution of the institutionally fragmented architecture of global CCS governance. The 2005 IPCC Special Report on CCS demonstrates the pivotal role that ideas, norms and scientific knowledge have played in transforming the preferences of the international climate-change policy community.  相似文献   

3.
This article reviews the political economy of government choice around technology support for the development and deployment of low carbon emission energy technologies, such as Carbon Capture and Storage (CCS). It is concerned with how governments should allocate limited economic resources across abatement alternatives. In particular, it explores two inter-related questions. First, should government support focus on a narrow range of options or be distributed across many potential alternatives? Second, what criteria should be considered when determining which specific technologies to support? It presents a simple economic model with experience curves for CCS and renewable energy technologies to explore the lowest cost alternatives for meeting an emission abatement objective. It then explores a variety of economic and political factors that must be considered when governments make decisions about technology support.  相似文献   

4.
Abstract

The social cost of carbon (SCC) is the value of the climate change impacts from 1 tonne of carbon emitted today as CO2, aggregated over time and discounted back to the present day. We used PAGE2002, the same probabilistic integrated assessment model as used by the Stern Review (Stern et al., 2006), to calculate the SCC and to examine how it varies with discount rate; and find that it is not sensitive to the path of emissions on which the tonne of carbon is superimposed. The mean value of the SCC is $43 per tonne under both a business-as-usual scenario, and under a scenario aimed at stabilizing CO2 concentrations at 550 ppm. This counter-intuitive result is caused by the interplay between the logarithmic relationship between forcing and concentration, the nonlinear relationship of damage to temperature, and discounting. However, the SCC is sensitive to a number of scientific and economic inputs to the model. Two recent distributions for the sensitivity of climate to a doubling of atmospheric CO2 (Murphy et al., 2004; Stainforth et al., 2005) increase the mean value of the SCC from $43 to $68 and $90 per tonne. Using a pure rate of time preference of 0.1% per year, as in the Stern Review, gives a mean SCC of $365 per tonne.  相似文献   

5.
6.
Carbon capture and storage (CCS) is increasingly depicted as an important element of the carbon dioxide mitigation portfolio. However, critics have warned that CCS might lead to “reinforced fossil fuel lock-in”, by perpetuating a fossil fuel based energy provision system. Due to large-scale investments in CCS infrastructure, the fossil fuel based ‘regime’ would be perpetuated to at least the end of this century.In this paper we investigate if and how CCS could help to avoid reinforcing fossil fuel lock-in. First we develop a set of criteria to estimate the degree of technological lock-in. We apply these criteria to assess the lock-in reinforcement effect of adding CCS to the fossil fuel socio-technical regime (FFR).In principle, carbon dioxide could be captured from any carbon dioxide point source. In the practice of present technological innovations, business strategies, and policy developments, CCS is most often coupled to coal power plants. However, there are many point sources of carbon dioxide that are not directly related to coal or even fossil fuels. For instance, many forms of bio-energy or biomass-based processes generate significant streams of carbon dioxide emissions. Capturing this carbon dioxide which was originally sequestered in biomass could lead to negative carbon dioxide emissions.We use the functional approach of technical innovations systems (TIS) to estimate in more detail the strengths of the “niches” CCS and Bio-Energy with CCS (BECCS). We also assess the orientation of the CCS niche towards the FFR and the risk of crowding out BECCS. Next we develop pathways for developing fossil energy carbon capture and storage, BECCS, and combinations of them, using transition pathways concepts. The outcome is that a large-scale BECCS development could be feasible under certain conditions, thus largely avoiding the risk of reinforced fossil fuel lock-in.  相似文献   

7.
Demonstration of a fully integrated power plant with carbon capture and storage (CCS) at scale has not yet been achieved, despite growing international political interest in the potential of the technology to contribute to climate change mitigation and calls from multiple constituents for more demonstration projects. Acknowledging the scale of learning that still must occur for the technology to advance towards deployment, multiple CCS demonstration projects of various scales are emerging globally. Current plans for learning and knowledge sharing associated with demonstration projects, however, seem to be limited and narrowly conceived, raising questions about whether the projects will deliver on the expectations raised. Through a comparison of the structure, framing and socio-political context of three very different CCS demonstration projects in different places and contexts, this paper explores the complexity of social learning associated with demonstration projects. Variety in expectations of the demonstration projects’ objectives, learning processes, information sharing mechanisms, public engagement initiatives, financing and collaborative partnerships are highlighted. The comparison shows that multiple factors including the process of building support for the project, the governance context and the framing of the project matter for the learning in demonstration projects. This analysis supports a broader conceptualization of learning than that currently found in CCS demonstration plans - a result with implications for both future research and practice.  相似文献   

8.
Carbon capture and storage (CCS) is considered by some to be a promising technology to reduce greenhouse gas emissions, and advocates are seeking policies to facilitate its deployment. Unlike many countries, which approach the development of policies for geologic storage (GS) of carbon dioxide (CO2) with nearly a blank slate, the U.S. already has a mature policy regime devoted to the injection of CO2 into deep geologic formations. However, the existing governance of CO2 injection is designed to manage enhanced oil recovery (EOR), and policy changes would be needed to manage the risks and benefits of CO2 injection for the purpose of avoiding GHG emissions. We review GS policy developments at both the U.S. federal and state levels, including original research on state GS policy development. By applying advocacy coalition framework theory, we identify two competing coalitions defined by their beliefs about the primary purpose of CO2 injection: energy supply or greenhouse gas (GHG) emission reductions. The established energy coalition is the beneficiary of the current policy regime. Their vision of GS policy is protective: to minimize harm to fossil energy industries if climate policy were to be enacted. In contrast, the newly formed climate coalition seeks to change existing GS policy to support their proactive vision: to maximize GHG reductions using CCS when climate policy is enacted. We explore where and at what scale legislation emerges and examine which institutions gain prominence as drivers of policy change. Through a detailed textual analysis of the content of state GS legislation, we find that the energy coalition has had greater success than the climate coalition in shaping state laws to align with its policy preferences. It has enshrined its view of the purpose of CO2 injection in state legislation, delegated authority for GS to state agencies aligned with the existing policy regime, and protected the EOR status quo, while creating new opportunities for EOR operators to profit from the storage of CO2 The climate coalition's objective of proactively putting GS policy in place has been furthered, and important progress has been made on commonly held concerns, such as the resolution of property rights issues, but the net result is policy change that does not significantly revise the existing policy regime.  相似文献   

9.
Mobilizing climate finance for climate change mitigation is a crucial part of meeting the ‘well-below’ 2°C goal of the Paris Agreement. Climate finance refers to investments specifically in climate change mitigation and adaptation activities, which involve public finance and the leveraging of private finance. A large proportion of climate finance is Official Development Assistance (ODA) from OECD countries to ODA-eligible countries. The evidence shows that the largest proportion of climate finance for climate change mitigation has been channelled to the development of renewable energy, with a much smaller proportion flowing to other crucial forms of clean energy-related measures, such as demand-side management (DSM) (particularly sustainable cooling) and carbon capture, usage and storage (CCUS). This forms the rationale and aim of this synthesis paper: to review the role of climate finance to develop clean energy beyond renewables. In doing so, the paper draws on practical policy and programme experiences of some donor countries, such as the UK, and Development Finance Institutions (DFIs). This paper argues that a greater amount of climate finance from OECD countries to ODA-eligible fossil fuel-intensive emerging economies and developing countries is required for sustainable cooling and CCUS, particularly in the form of technical assistance and clean energy innovation.

Key policy insights

  • Demand-side management (DSM) and carbon capture, usage and storage (CCUS) are underfunded in climate finance compared with the promotion of renewables.

  • Climate finance for sustainable cooling, in particular, represents just 0.04% of total ODA, despite cooling projected to represent 13% of global emissions by 2030.

  • Public investment in CCUS is limited at US $28 billion since 2007, despite the costs of meeting the Paris Agreement estimated to be 40-128% more expensive without CCUS.

  • Additional climate finance for these sectors should not come at the expense of funding for renewables but should be complementary to it.

  相似文献   

10.
近年来,碳捕集利用与封存(CCUS)作为减缓气候变化的关键技术之一,得到国际社会广泛关注。政府间气候变化专门委员会(IPCC)第六次评估报告(AR6)第三工作组报告对CCUS进行了重新定位,并围绕减排潜力、减排成本、综合效益及应用前景等方面,对CCUS相关技术进行了系统全面评估。结论显示,CCUS技术是全球气候目标实现不可或缺的减排技术组合,到21世纪中叶有潜力实现累积千亿吨级减排效应,但当前CCUS技术成熟度整体处于示范阶段,成本较高,减排潜力有待进一步释放。综合考虑CCUS可以有效降低巨额资产搁浅风险、具有良好社会环境效益等因素,我国应结合自身“富煤、贫油、少气”的资源禀赋和基本国情,将CCUS作为战略性技术,统筹政策顶层设计、加速技术体系构建、探索市场激励机制、加强国际科技合作,促进CCUS技术发展。  相似文献   

11.
Abstract

New Labour came to power in 1997 pledging to put environment concerns at the heart of policy-making. Shortly after being elected, the Labour Government signed the Kyoto Protocol and adopted a voluntary domestic target of a 20% cut in carbon dioxide emissions by 2010. This article looks at the development of UK climate policy since 1997 and the political drivers that have led to development of the climate policy mix. It assesses the Climate Change Programme adopted in 2000 and its delivery, and it also looks at the 5-year Climate Change Programme Review published in March 2006. It conducts a quantitative assessment of the UK's performance by looking at emissions data, and it also provides a qualitative analysis, by looking at the UK policies and measures within their political and institutional context. The article concludes that Labour has been actively promoting climate policy since coming to power and has played a strong leadership role internationally. The UK is on track to meet and surpass its Kyoto target, meeting its international commitments. Between 24.1 and 29.1 million tonnes of carbon savings per year are expected by 2010. Policies and measures in the industrial sector are delivering real emissions reductions, in addition to the reductions made through fuel switching. The Government has found it more difficult to make some of the tough choices necessary to deliver emissions reductions in the transport and the household sectors. The article seeks to explain why the Labour Government has found it uncomfortable, politically, to implement stronger measures in these parts of the economy. The article highlights the changing dynamics within UK politics and concludes that there are two possible avenues for taking more stringent measures in the future. The first involves the development of a cross-party consensus on climate change. The second is to change the way that climate change is framed, so that it is no longer seen as an ‘environment’ issue but one with which voters and decision-makers can immediately connect. Only then will it be possible to implement the necessary policies and measures across the whole economy.  相似文献   

12.
The relationship between R&D investments and technical change is inherently uncertain. In this paper we combine economics and decision analysis to incorporate the uncertainty of technical change into climate change policy analysis. We present the results of an expert elicitation on the prospects for technical change in carbon capture and storage. We find a significant amount of disagreement between experts, even over the most mature technology; and this disagreement is most pronounced in regards to cost estimates. We then use the results of the expert elicitations as inputs to the MiniCAM integrated assessment model, to derive probabilistic information about the impacts of R&D investments on the costs of emissions abatement. We conclude that we need to gather more information about the technical and societal potential for Carbon Storage; cost differences among the different capture technologies play a relatively smaller role.  相似文献   

13.
Climate engineering (CE) and carbon capture and storage are controversial options for addressing climate change. This study compares public perception in Germany of three specific measures: solar radiation management (SRM) via stratospheric sulphate injection, large-scale afforestation, and carbon capture and storage sub-seabed (CCS-S). In a survey experiment we find that afforestation is most readily accepted as a measure for addressing climate change, followed by CCS-S and lastly SRM, which is widely rejected. Providing additional information decreases acceptance for all measures, but their ranking remains unchanged. The acceptance of all three measures is especially influenced by the perceived seriousness of climate change and by trust in institutions. Also, respondents dislike the measures more if they perceive them as a way of shirking responsibility for emissions or as an unconscionable manipulation of nature. Women react more negatively to information than men, whereas the level of education or the degree of intuitive vs reflective decision making does not influence the reaction to information.

POLICY RELEVANCE

Current projections suggest that the use of climate engineering (CE) technologies or carbon capture and storage (CCS) is necessary if global warming is to be kept well below 2°C. Our article focuses on the perspective of the general public and thus supplements the dialogue between policymakers, interest groups, and scientists on how to address climate change. We show that in Germany public acceptance of potentially effective measures such as SRM or CCS-S is low and decreases even more when additional information is provided. This implies that lack of public acceptance may turn out to be a bottleneck for future implementation. Ongoing research and development in connection with CCS-S and SRM requires continuous communication with, and involvement of, the public in order to obtain feedback and assess the public’s reservations about the measures. The low level of acceptance also implies that emission reduction should remain a priority in climate policy.  相似文献   


14.
《Climate Policy》2013,13(1):789-812
To what degree are recently built and planned power plants in the EU ‘capture-ready’ for carbon capture and storage (CCS)? Survey results show that most recently built fossil fuel power plants have not been designed as capture-ready. For 20 planned coal-fired plants, 13 were said to be capture-ready (65%). For 31 planned gas-fired power plants, only 2 were indicated to be capture-ready (6%). Recently built or planned power plants are expected to cover a large share of fossil fuel capacity by 2030 and thereby have a large impact on the possibility to implement CCS after 2020. It is estimated that around 15–30% of fossil fuel capacity by 2030 can be capture-ready or have CO2 capture implemented from the start. If CCS is implemented at these plants, 14–28% of baseline CO2 emissions from fossil fuel power generation in 2030 could be mitigated, equivalent to 220–410 MtCO2. A key reason indicated by utilities for building a capture-ready plant is (expected) national or EU policies. In addition, financial incentives and expected high CO2 prices are important. The implementation of a long-term regulatory framework for CCS with clear definitions of ‘capture- readiness’ and policy requirements will be important challenges.  相似文献   

15.
In order to meet the challenge of climate change while allowing for continued economic development, the world will have to adopt a net zero carbon energy infrastructure. Due to the world’s large stock of low-cost fossil fuels, there is strong motivation to explore the opportunities for capturing the CO2 that is produced in the combustion of fossil fuels and keeping it out of the atmosphere. Three distinct sets of technologies are needed to allow for climate neutral use of fossil fuels: (1) capture of CO2 at concentrated sources like electric power plants, future hydrogen production plants and steel and cement plants; (2) capture of CO2 from the air; and (3) the safe and permanent storage of CO2 away from the atmosphere. A strong regime of carbon accounting is also necessary to gain the public’s trust in the safety and permanence of CO2 storage. This paper begins with an extensive overview of carbon capture and storage technologies, and then presents a vision for the potential implementation of carbon capture and storage, drawing upon new ideas such as air capture technology, leakage insurance, and monitoring using a radioactive isotope such as C-14. These innovations, which may provide a partial solution for managing the risks associated with long-term carbon storage, are not well developed in the existing literature and deserve greater study.  相似文献   

16.
Together, the U.S. and China emit roughly 40% of world's greenhouse gas emissions, and these nations have stated their desire to reduce absolute emissions (U.S.) or reduce the carbon intensity of the economy (China). However, both countries are dependent on coal for a large portion of their energy needs, which is projected to continue over the next several decades. They also have large amounts of coal resources, coal-dependent electricity production, and in China's case, extensive use of coal in the industrial sector, making any shift from coal socio-politically difficult. Both nations could use carbon capture and storage (CCS) technologies to simultaneously decrease greenhouse gas emissions and continue the use of domestic coal resources; however, the socio-political context for CCS deployment differs substantially between the two countries and potentially makes large-scale CCS deployment challenging. Here, we examine and compare the political and institutional contexts shaping CCS policy and CCS deployment, both for initial pilot projects and for the creation of large-scale CCS technology deployment, and analyze how the socio-political context for CCS in China and the United States aligns with national climate, energy security, and economic priorities.  相似文献   

17.
In this paper, we compare different policy incentives for overcoming investment uncertainties that are typical for low-carbon technologies prior to their commercialisation, some of which may be attributable to market failures. The paper focuses on the particular case of carbon capture and storage (CCS) technologies and conducts a qualitative multi-criteria analysis of different public policy support schemes for CCS demonstration to evaluate their suitability. The assessed schemes include mandatory CCS, emission performance standards and several different financial incentives (in addition to the European Union Emission Trading Scheme). Based on the available literature and on experience in the UK and Germany with promotion instruments for low-carbon technologies, the results of our analysis suggest that two alternative schemes, a CCS bonus incentive or a carbon dioxide (CO2) price guarantee, perform best in comparison with the other assessed instruments. While they reduce the uncertainty of CCS investments in the face of low European Union Allowance prices, they also avoid significant adverse impacts on operational and investment decisions in electricity markets.  相似文献   

18.
Abstract

A series of meetings of two ‘Citizen Panels’ were held to explore public perceptions of off-shore carbon dioxide (CO2) capture and storage (CCS). In addition, a face-to-face survey of 212 randomly selected individuals was conducted. We found that, on first hearing about CCS in the absence of any information on its purpose, the majority of people either do not have an opinion at all or have a somewhat negative perspective. However, when (even limited) information is provided on the role of CO2 storage in reducing CO2 emissions to the atmosphere, opinion shifts towards expressing slight support for the concept.

Support depends, however, upon concern about human-caused climate change, plus recognition of the need for major reductions in CO2 emissions. It also depends upon CCS being seen as just one part of a wider strategy for achieving significant cuts in CO2 emissions. A portfolio including renewable energy technologies, energy efficiency, and lifestyle change to reduce demand was generally favoured. CCS can be part of such a portfolio, but wind, wave, tidal, solar and energy efficiency were preferred. It was felt that uncertainties concerning the potential risks of CCS had to be better addressed and reduced; in particular the risks of accidents and leakage (including the potential environmental, ecosystem and human health impacts which might result from leakage).  相似文献   

19.
Carbon capture and storage (CCS) is considered a potential climate change mitigation option, but public opposition may hamper its implementation. A quasi-experimental approach is used to examine whether ‘not in my back yard’ (NIMBY) sentiments can be anticipated at the initial stage when CO2 storage locations have been selected and communicated to the public. Furthermore, the psychological structure of initial reactions to CO2 storage plans is studied to ascertain the differences between people living in the direct vicinity of a proposed CO2 storage location (i.e. onsite residents) and people who do not (i.e. offsite residents). The results indicate that initial reactions to local CCS plans are not necessarily dominated by NIMBY sentiments. For onsite residents as well as offsite residents, trust in government affects their judgements of the risks and benefits associated with CCS, which in turn affects their inclination to protest against CCS plans. Onsite residents’ inclination to protest is affected by their perceptions of local safety risks, but this is less of a concern for offsite residents. The inclination to protest against CCS is unrelated to concern about climate change.  相似文献   

20.
China is the world's largest carbon dioxide (CO2) emitter and its energy system is dominated by coal. For China to dramatically reduce its greenhouse gas (GHG) emissions over the next few decades, it must either replace most of its uses of coal with energy supplies from renewables and nuclear power or install demonstration-size and then scaled-up carbon capture and storage (CCS) technologies. Currently, China is pushing ahead with increased investment in renewables and nuclear power and with demonstration CCS projects. This strategy is consistent with a country that seeks to be ready in case global pressures prompt it to launch an aggressive GHG reduction effort while also not going so fast that it reduces the likelihood of receiving substantial financial support from wealthier countries, as it feels it is entitled to as a developing country. At such a time, given the magnitude of the coal resource in China, and the country's lack of other energy resources, it is likely the Chinese will make a substantial effort to develop CCS before taking the much more difficult step of trying to phase-out almost all use of coal in the span of just a few decades in a country that is so dependent on this domestically abundant and economically affordable resource.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号