首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MG30 is natural rubber grafted with 30% poly(methyl methacrylate). Gel polymer electrolytes containing MG30–LiCF3SO3–X (X = propylene carbonate, ethylene carbonate) are prepared by solution casting technique. The polymer–salt complexes were investigated using Fourier-transformed infrared. The ionic conductivity of the electrolytes are determined by the ac impedance studies over the temperature range of 303–383 K and is observed to obey the Vogel–Tamman–Fulcher (VTF) rule. The Li+ transference number obtained using the Bruce and Vincent method is <0.3. The Li/Li+ interface stability is established and the electrolytes were found to be able to withstand a voltage of more than 4.2 V.  相似文献   

2.
《Solid State Ionics》2006,177(26-32):2679-2682
The polymer electrolytes comprising blend of poly(vinyl acetate) (PVAc) and poly(methylmethacrylate) (PMMA) as a host polymer and LiClO4 as a dopant are prepared by solution casting technique. The amorphous nature of the polymer–salt complex has been confirmed by XRD analysis. The DSC thermograms show two Tg's for PVAc–PMMA blend. A decrease in Tg with the LiClO4 content reveals the increase of segmental motion. Conductance spectra results are found to obey the Jonscher's power law and the maximum dc conductivity value is found to be 1.76 × 10 3 S cm 1 at 303 K for the blend polymer complex with 20 wt.% LiClO4, which is suitable for the Li rechargeable batteries. The conductivity–temperature plots are found to follow an Arrhenius nature. The dc conductivity is found to increase with increase of salt concentration in the blend polymer complexes.  相似文献   

3.
Rajiv Kumar  S. S. Sekhon 《Ionics》2013,19(11):1627-1635
The addition of polymer to liquid electrolytes containing trifluoromethanesulfonic acid (HCF3SO3) in propylene carbonate (PC) has been found to result in an increase in conductivity of gel electrolytes. The increase in conductivity has been observed to be due to the dissociation of ion aggregates present in the electrolytes which has also been supported by Fourier transform infrared studies. The maximum ionic conductivity (at 25 °C) of 7.55?×?10?3 S/cm has been observed for polymer gel electrolytes containing 1.5 wt% polymethylmethacrylate in 0.5 M solution of HCF3SO3 in PC. Polymer gel electrolytes have been found to be thermally stable up to a temperature of 125 °C by simultaneous differential scanning calorimetry/thermogravimetric analysis studies. The conductivity of polymer gel electrolytes does not show any appreciable change over a limited period of time.  相似文献   

4.
W. L. Tan  M. Abu Bakar 《Ionics》2016,22(8):1319-1335
The various solid lithium salt-magnetite/epoxidized natural rubber (LiX-Fe3O4/ENR) composite polymer electrolytes (CPEs) were obtained via solvent casting method. The CPEs were characterized using SEM/X-mapping, TEM, FTIR, DSC, TG analysis, and impedance spectroscopy. The CPEs demonstrate similar thermal behavior as their respective LiX-ENR polymer electrolytes (PEs) where X?=?COOCF3 ?, I?, CF3SO3 ?, and ClO4 ?. The presence of Fe3O4 particles in the CPEs enhanced the conductivity where an improvement of 1–2 orders of magnitude in CPEs’ conductivity is observed as compared to the PE counterparts. The CPEs showed an ion transference number (t ion) of >0.92 suggesting that ionic conduction remain dominant. In these CPEs, the Fe3O4 particles facilitated the movement of charge carrier via space-charge creation at the particle/polymer interface as well as increasing the amorphocity of the ENR matrix. The LiX (where X?=?COOCF3 ?, I?, and CF3SO3 ?), however, gave no significant effect to the thermal stability of ENR in the CPE while LiClO4 destabilized the ENR in the CPE. In contrast, the LiBF4-Fe3O4/ENR was thermally less stable (<20 °C) as compared to the respective LiBF4-ENR PE. Nevertheless, the activation energy for the degradation (E d ) of ENR in the CPEs is higher than the Fe3O4/ENR composite.  相似文献   

5.
Attenuated total reflectance–Fourier transformed infrared spectroscopy measurement is employed to study the interactions between the components of 30% methyl-grafted natural rubber (MG30), lithium trifluromethanesulfonate (LiCF3SO3 or LiTF), and propylene carbonate (PC). Vibrational spectra data of LiTF reveals that the νs(SO3) at 1,045 cm−1, δs(CF3) at 777 cm−1, and C=O stretching mode at 1,728 cm−1 for MG30 have shifted to lower wave numbers in MG30–LiTF complexes indicating that complexation has occurred between MG30 and LiTF. The solvation of lithium ion is manifested in Li+ ← O=C interaction as shown by the downshifting and upshifting of C=O mode at 1,788 to 1,775 cm−1 and νas(SO3) at 1,250 to 1258 cm−1, respectively, in LiTF–PC electrolytes. There is no experimental evidence of the interaction between MG30 and PC. Competition between MG30 and PC on associating with lithium ion is studied, and the studies show that the interaction between MG30–LiTF is stronger than that of the PC–LiTF in plasticized polymer–salt complexes. The effect of PC on the ionic conductivity of the MG30–LiTF system is explained in terms of the polymer, plasticizer, and salt interactions. The temperature dependence of conductivity of the polymer films obeys the Vogel–Tamman–Fulcher relation. Values of conductivity and activation energy of the MG30-based polymer electrolyte systems are presented and discussed.  相似文献   

6.
Dr. S. Rajendran  T. Uma 《Ionics》2001,7(1-2):122-125
Poly (vinylchloride) (PVC)-LiBF4 polymer electrolytes plasticized with DBP in different mole ratios have been studied by FTIR and Impedance Spectroscopic techniques. The complexation has been confirmed from FTIR studies. The maximum room temperature conductivity (2.1·.10−7 S·.cm−1) has been observed for PVC-LiBF4-DBP (10-5-85 mole%) complex. The temperature dependence of the conductivity of the polymer films seems to obey the VTF relation. The conductivity values are presented and the results are discussed.  相似文献   

7.
Lithium salt, LiX (where X = BF 4 ? , I?, CF3SO 3 ? , COOCF 3 ? or ClO 4 ? ), was incorporated into epoxidized natural rubber (ENR). Thin films of LiX-ENR polymer electrolytes (PEs) were obtained via solvent casting method. These electrolytes were characterized using SEM/X-mapping, FTIR, differential scanning calorimeter, thermogravimetry analysis, and impedance spectroscopy. The trend in thermal stability and ionic conductivity of LiX-ENR PEs follow LiBF4 > > LiCF3SO3 ~ LiCOOCF3 > LiI > > LiClO4. The LiClO4 hardly dissociates and formed LiClO4 aggregates within the polymer matrix that resulted in a PE with low thermal stability and low ionic conductivity. The LiCF3SO3, LiCOOCF3, and LiI, however, exert moderate interactions with the ENR, and their respective PEs exhibit moderate ionic conductivity and thermal property. The occurrence of epoxide ring opening and complexation or cross-linking reactions in and between the ENR chains that involve BF 4 ? ions have produced a LiBF4-ENR PE with superior thermal property and ionic conductivity as compared to other PEs studied in this work.  相似文献   

8.
A proton-conducting polymer electrolyte based on starch and ammonium nitrate (NH4NO3) has been prepared through solution casting method. Ionic conductivity for the system was conducted over a wide range of frequency between 50 Hz and 1 MHz and at temperatures between 303 K and 373 K. Impedance analysis shows that sample with 25 wt.% NH4NO3 has a smaller bulk resistance (R b) compared to that of the pure sample. The amount of NH4NO3 was found to influence the proton conduction; the highest obtainable room temperature conductivity was 2.83 × 10−5 S cm−1, while at 100 °C, the conductivity in found to be 2.09 × 10−4 S cm−1. The dielectric analysis demonstrates a non-Debye behavior. Transport parameters of the samples were calculated using the Rice and Roth model and thus shows that the increase in conductivity is due to the increase in the number of mobile ions.  相似文献   

9.
The preparation and characterization of composite polymer electrolytes of PMMA-LiClO4-DMP for different concentrations of CeO2 have been investigated. FTIR studies indicate complex formation between the polymer, salt and plasticizer. The electrical conductivity values measured by a.c. impedance spectroscopy are found to depend upon the CeO2 concentration. The temperature dependence of the conductivity of the polymer films seems to obey the VTF relation. The conductivity values are presented and the results are discussed.  相似文献   

10.
《Solid State Ionics》2006,177(26-32):2699-2704
Composite salt-in-polymer electrolyte membranes were prepared from poly[(bis(2-methoxyethyl)amino)1−x(n-propylamino)x-phosphazene] (BMEAP) with dissolved LiCF3SO3 and dispersed Al2O3 nanoparticles (40 nm). Membranes with good mechanical stability were obtained. Low ionic conductivities were found in particle free membranes with maximum conductivities at 10 wt.% LiCF3SO3 ranging from 3.1 × 10 7 S/cm at 30 °C to 1.8 × 10 5 S/cm at 90 °C. For the composite membranes, addition of 2 wt.% Al2O3 nanoparticles leads to a steep increase of the conductivity by almost two orders of magnitude as compared to the homogeneous membranes. The highest room temperature conductivity for the investigated BMEAP–LiCF3SO3–Al2O3 composite systems was 10 5 S/cm.  相似文献   

11.
Two types of polymer electrolytes were studied: poly(ethylene oxide) (PEO) and epoxidized natural rubber (ENR) both filled with lithium perchlorate. Universal dielectric behavior and impedance relaxation were investigated at room temperature over a wide range of salt concentration. Complex impedance plots exhibit one semicircle in some cases (PEO polymer electrolytes) with an extended spike at low frequencies. This implies a double layer capacity strongly influences conductivity at low frequencies. In the ENR–salt system, semicircles can be obtained only at very high concentrations. This points towards stable resistor dominated networks only develop at very high salt concentrations for this system. Centers of the semicircles lie below real axis indicating non-Debye dielectric relaxation. The relaxation peak broadens and shifts to higher frequencies with increasing salt content. It indicates that the relaxation time of polarization relaxations decreases with ascending salt content. Relaxations occur at extremely low salt concentrations in PEO and only at very high salt concentrations in ENR. Hence, conductivity of ENR–salt is one to two orders of magnitude lower as for PEO–salt.  相似文献   

12.
Poly(methylmetacrylate)/poly(ethylene oxide) (PMMA/PEO) based polymer electrolytes were synthesized using the solution cast technique. Four systems of PMMA/PEO blends based polymer electrolytes films were investigated:
  1. PMMA/PEO system,
  2. PMMA/PEO + ethylene carbonate (EC) system,
  3. PMMA/PEO + lithium hexafluorophosphate (LiPF6) system and
  4. PMMA/PEO + EC + LiPF6 system.
The polymer electrolytes films were characterized by Impedance Spectroscopy and Fourier Transform Infrared Spectroscopy (FTIR). The FTIR spectra show the complexation occurring between the polymers, plasticizer and lithium salt. The FTIR results give further insight in the conductivity enhancement of PMMA/PEO blends based polymer electrolytes.  相似文献   

13.
Nanocomposite polymer electrolytes (NCPEs) composed of poly(vinylidenefluoride-co-hexafluoropropylene) (PVdF-co-HFP) as a host polymer, Poly(vinyl acetate) (PVAc) as an additive, Ethylene Carbonate (EC) as a plasticizer, Lithium Perchlorate as dopant salt and Barium Titanate (BaTiO3) as a filler were prepared for various concentrations of BaTiO3 using solvent casting technique. Thermal stability of the sample having maximum ionic conductivity was found using TG/DTA analysis. Nano composite polymer electrolytes were subjected to ac impedance analysis spectra for acquiring the ionic conductivity values at different temperature. Surface structure of the sample was analysed using scanning electron microscope and the complexations of samples were analysed using X-ray diffraction analysis. It was noted that the polymer electrolyte contains 8 wt. % of BaTiO3 showed maximum ionic conductivity than the other ratios of BaTiO3.  相似文献   

14.
Z. Osman 《Ionics》2005,11(5-6):397-401
Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC) have been employed to study the thermal stability of the chitosan acetate-based polymer electrolyte films. The glass transition temperature, Tg measurements confirm the conductivity enhancement effect by adding the plasticizer and salt in the chitosan acetate films Paper presented at the International Conference on Functional Materials and Devices 2005, Kuala Lumpur, Malaysia, June 6 – 8, 2005.  相似文献   

15.
Terminal-acetylated hyperbranched poly(ethylene glycol) derivatives containing diethylene, triethylene, and hexaethylene and 3,5-dioxybenzoate branching units (poly-Ac1a, poly-Ac1b, and poly-Ac1c) were synthesized. Electrochemical and thermal properties of the hyperbranched polymer electrolytes with lithium salts such as LiCF3SO3 and LiN(CF3SO2)2, the composite hyperbranched polymer electrolytes with LiN(CF3SO2)2 containing α-LiAlO2 and γ-LiAlO2 fillers, and the hyperbranched polymer blended poly(ethylene oxide) electrolytes with LiN(CF3SO2)2 were investigated and discussed. Paper presented at the 8th EuroConference on Ionics, Carvoeire, Algarve, Portugal, Sept. 16–22, 2001.  相似文献   

16.
(PEO) n :ZnX 2 (X = I, Br) complexes were formed at room temperature with values ofn ranging from 8 to 30. Differential scanning calorimetry (DSC) results indicate that none of them contained any crystalline phases that can be associated with the formation of a complex (i.e. it can be assumed that all the salt is in the amorphous phase). EXAFS studies carried out on these samples suggest that the zinc cation is co-ordinated to two of the halide ions and, in addition, to 4 oxygen atoms whereX = I and 6 oxygen atoms whereX = Br. The DSC results confirm that the zinc cation is in an environment independent of overall stoichiometry, as the glass transition temperatures of the samples were found to be similar throughout. By comparing these with those of annealed samples (made by heating the above samples to 150°C and cooling to –80°C at 320°C min–1) it was found that the stoichiometry of the amorphous phase was roughly 61 forX=I and 81 forX = Br.  相似文献   

17.
PMMA based protonic polymer gel electrolytes   总被引:1,自引:0,他引:1  
The paper reports the synthesis of protonic polymer gel electrolytes containing different hydroxy benzoic acids (ortho-, meta- and para-) and aliphatic dicarboxylic acids. Gel electrolytes were prepared by adding polymethylmethacrylate (PMMA) in different weight ratios to the 1M solution of above acids in a ternary solvent mixture of propylene carbonate (PC), ethylene carbonate (EC) and dimethylformamide (DMF) in equal volume ratio. The conductivity of these gel electrolytes has been found to depend upon the amount of PMMA added to the system. A “Breathing Polymeric Chain Model” has been proposed to explain the variation of conductivity with PMMA concentration in these gel electrolytes.  相似文献   

18.
The potential of 49% poly(methyl methacrylate)-grafted natural rubber (MG49) as a solid polymer electrolyte film in rechargeable batteries system were explored. The flat, thin, and flexible films were prepared by solution casting technique. The ionic conductivity was investigated by alternating current impedance spectroscopy. The highest conductivity of 2.3 × 10−7 Scm−1 was obtained at 20wt.% of LiBF4 salts content, while 4.0 × 10−8 Scm−1 was obtained at 15wt.% LiClO4 salts loading. The observation on structure performed by X-ray diffraction shows the highest conductivity appears at amorphous phase.  相似文献   

19.
Polymer electrolyte films prepared from poly (methyl methacrylate) and LiAsF6 with different concentrations of plasticizer (DBP) are described. The formation of polymer-salt complexes has been confirmed by XRD and FTIR spectral studies. The temperature dependence of the conductivity of the polymer films obeys the VTF relation. Values of conductivities of the polymer complexes are presented and discussed.  相似文献   

20.
In this work, we investigate the electrical, structural, and thermal properties of composite polymer electrolytes (CPEs). Different mass fractions of antimony trioxide filler, Sb2O3, are added into poly(acrylic acid) (PAA)-based polymer electrolytes with N-lithiotrifluoromethane sulphonamide [LiN(SO2CF3)2] (LiTFSI) as doping salt. Characteristics such as alternating current (AC)–impedance spectroscopy, attenuated total reflectance–Fourier transform infrared (ATR-FTIR), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA) are analyzed. The highest ionic conductivity of (2.15?±?0.01)?×?10?4 S cm?1 is achieved at room temperature with addition of 6 wt% of fillers. The ionic transportation is further proven in a transference number study under DC polarization, whereas ATR-FTIR is employed to explore the complexation between PAA, LiTFSI, and Sb2O3. TGA reveals the improved thermal stability of CPEs. The glass transition temperature (T g) is reduced upon addition of Sb2O3 as shown in DSC analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号