首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Y. N. Bai  J. Y. Gai 《Euphytica》2005,145(1-2):25-32
At present, no report on inheritance of male fertility restoration has been released, yet more than 10 cytoplasmic-nuclear male-sterile soybean lines as well as their maintainers and restorers have been developed. Based on our previous work, 25 restorers for the male-sterile line NJCMS1A were identified and the inheritance of male fertility restoration for these restorers was studied. The results showed that F1s between NJCMS1A and its restorers were completely male-fertile. The numbers of fertile and sterile plants in the F2 population of Cross I (NJCMS1A × N23601) and Cross II (NJCMS1A × N23683) corresponded to a segregation ratio of 15:1, and the numbers of non-segregation lines, 3:1 segregation lines and 15:1 segregation lines in F2:3 of the same two crosses fitted a 7:4:4 genotypic segregation ratio. The testcross BC1F1s between the F1s of the above two crosses and NJCMS1A, NJCMS1B showed a 3:1 segregation ratio. Accordingly, it was inferred that two pairs of duplicate dominant genes controlled the male fertility restoration of NJCMS1A in both crosses. Meanwhile, F2 of other 23 crosses between NJCMS1A and its 23 restorers showed a fertility segregation ratio of 3:1 or 15:1. The F1s of the five testcrosses between NJCMS1A and the F1s of five crosses selected from the above 23 crosses showed that fertility segregation was 3:1 in BC1F1s between NJCMS1A and F1s of the crosses of which fertility segregation fitted 15:1 in F2 population, while fertility segregation in BC1F1s was 1:1 for those fertility segregation fitted 3:1 in F2 population. Allelism tests showed that restore genes of all restorers in the experiment were allelic to two pairs of dominant genes. All results showed that some restorers bore one pair of dominant restore gene and the others bore two pairs of duplicate dominant gene. The mechanism of F1 male sterility of the cross N8855 × N2899 was discussed.  相似文献   

2.
W. J. DU  S. X. FU  D. Y. YU 《Plant Breeding》2009,128(3):259-265
Leaf pubescence density (PD) is an important component for the adaptation of soybean [ Glycine max (L.) Merr.] to drought-prone environment. Quantitative trait loci (QTL) controlling PD on the upper surface of leaf blade (PDU), PD on the lower surface of leaf blade (PDL), leaf wilting coefficient (WC) and rate of excised leaf drying (ELD) were identified using recombinant inbred lines (RILs) population from the cross between soybean cultivars 'kefeng1' and 'nannong1138-2' at the field soil drought stress stage from the mid-end of stem elongation to onset of flowering. A total of 20 QTLs were detected on molecular linkage groups (MLGs) A2, D1b, E, H, G and I with individual QTL explained 4.49–23.56% of phenotypic variation by composite interval mapping. The QTLs for PD on MLG H were mapped to near Ps locus while the QTLs on MLG D1b were located near Rsc-7 . Three genome regions for PD and water status traits on MLGs A2, D1b and H were associated. This study revealed that leaf surface PD may play an important role in the soybean drought tolerance.  相似文献   

3.
大豆苗期耐淹性的遗传与QTL分析   总被引:2,自引:0,他引:2  
涝害是世界上许多国家的重大自然灾害。耐涝性可分为耐湿(渍)性和耐淹性。以科丰1号(高度耐淹)×南农1138-2(不耐淹)衍生的RIL群体(NJRIKY)为材料, 以盆栽全淹条件下的存活率为耐淹性指标, 采用主基因+多基因混合遗传模型分离分析法进行遗传分析, 并利用WinQTL Cartographer Version 2.5程序的复合区间作图法(CIM)及多区间作图法(MIM)进行QTL定位。结果表明, 两次试验的耐淹性均存在超亲变异, 试验间、家系间以及试验与家系互作间的差异均极显著; NJRIKY大豆群体的耐淹性为3对等加性主基因遗传模型, 主基因遗传率为42.40%; 在QTL分析中, 用CIM和MIM共同检测到3个耐淹QTL, 分别位于A1、D1a和G连锁群上的Satt648~K418_2V、Satt531~A941V、Satt038~Satt275 (B53B~Satt038)区间, 表型贡献率为4.4%~7.6%。分离分析与QTL定位的结果相对一致, 可相互印证。  相似文献   

4.
Green stem disorder (GSD) is one of the most serious syndromes affecting soybean (Glycine max) cultivation in Japan. In GSD, stems remain green even when pods mature. When soybean plants develop GSD, seed surfaces are soiled by tissue fluid and seed quality is deteriorated during machine harvesting. We performed quantitative trait locus (QTL) analyses for GSD insensitivity using recombinant inbred lines (RILs; n = 154) derived from a cross between an insensitive line (‘Touhoku 129’) and a sensitive leading cultivar (‘Tachinagaha’) during a 6-year evaluation. Three effective QTLs were detected. The influences of these QTLs were in the following order: qGSD1 (LG_H) > qGSD2 (LG_F) > qGSD3 (LG_L). At these three QTLs, ‘Touhoku 129’ genotypes exhibited more GSD insensitivity than ‘Tachinagaha’ genotypes. The lower incidence of GSD for ‘Touhoku129’ was attributable primarily to these three QTLs because RILs harboring a ‘Touhoku 129’ genotype at the three QTLs exhibited a GSD incidence similar to that of ‘Touhoku 129.’ Although a limitation of this study is that only one mapping population was evaluated, this QTL information and the flanking markers of these QTLs would be effective tools for resolving GSD in soybean breeding programs.  相似文献   

5.
吉林省大豆品种遗传改良过程中主要农艺性状的变化   总被引:8,自引:0,他引:8  
以吉林省1923—2005年间育成的30个大豆品种为材料, 两年的研究结果表明, 大豆种子产量随育成年代呈线性增加, 根据回归方程计算, 产量从1923年的1 197.80 kg hm-2到2005年的2 305.54 kg hm-2, 82年来增加了 1 107.73 kg hm-2, 平均每年增加14.60 kg hm-2。随着产量的提高, 株高降低, 主茎直径增加, 节数增多, 节间缩短, 分枝减少。相关和通径分析表明, 产量与单株荚数、单株粒数、单株叶面积、叶面积指数和单株复叶数目呈显著正相关(P<0.05), 单株荚数和单株粒数对于产量的提高贡献最大; 产量与株高、单株分枝数和倒伏指数呈显著负相关(P<0.05), 表明大豆产量的遗传改良过程中, 植株抗倒伏能力提高, 库容量增加, 源器官叶片的同化能力增强。  相似文献   

6.
Soybean cultivars carrying the `long juvenile trait' show a delayed flowering response under short day conditions. The incorporation of this character into genotypes of agronomic interest may allow a broader range of sowing dates and latitudes for a single cultivar adaptation. The objective of this work was to identify molecular markers linked to the juvenile locus in soybean. Experiments were carried out using two pairs of near isogenic lines(NILs) differing in the presence of the long juvenile trait, and RAPD markers. Four hundred primers were first screened to find polymorphism associated with the trait. Additional differences between NILs were sought by digesting the genomic DNA with five restriction enzymes. Polymorphic fragments detected between NILs were tested for linkage to the juvenile locus in the corresponding F2 segregating populations. Marker bc357-HaeIII was linked (χ2L = 46.316) to the juvenile locus with an estimated recombination frequency of 0.13 ± 0.03in one of the genetic backgrounds studied. The fragment was cloned, sequenced and converted into a SCAR marker. Moreover,bc357-HaeIII was used as RFLP probe. Both, SCAR and RFLP generated markers linked to the juvenile locus in the two genetic backgrounds analysed. Results presented in this work can be utilised for both, the localisation of the gene associated with the character and for tagging the juvenile trait in soybean breeding programs. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
Salinity is a common abiotic stress causing soybean [Glycine max (L.) Merr.] yield loss worldwide. The use of tolerant cultivars is an effective and economic approach to coping with this stress. Towards this, research is needed to identify salt‐tolerant germplasm and better understand the genetic and molecular basis of salt tolerance in soybean. The objectives of this study were to identify salt‐tolerant genotypes, to search for single‐nucleotide polymorphisms (SNPs) and QTLs associated with salt tolerance. A total of 192 diverse soybean lines and cultivars were screened for salt tolerance in the glasshouse based on visual leaf scorch scores after 15–18 days of 120 mM NaCl stress. These genotypes were further genotyped using the SoySNP50K iSelect BeadChip. Genomewide association mapping showed that 62 SNP markers representing six genomic regions on chromosomes (Chr.) 2, 3, 5, 6, 8 and 18, respectively, were significantly associated with salt tolerance (p < 0.001). A total of 52 SNP markers on Chr. 3 are mapped at or near the major salt tolerance QTL previously identified in S‐100 (Lee et al., 2014). Three SNPs on Chr. 18 map near the salt tolerance QTL previously identified in Nannong1138‐2 (Chen, Cui, Fu, Gai, & Yu, 2008). The other significant SNPs represent four putative minor QTLs for salt tolerance, newly identified in this study. The results above lay the foundation for fine mapping, cloning and molecular breeding for soybean salt tolerance.  相似文献   

8.
崔世友  喻德跃 《作物学报》2007,33(5):744-750
利用来自波高×南农94-156的151个RI家系检测与4个不同生育时期叶绿素含量(累积量、净增量)有关的QTL,并分析其与籽粒产量、表观生物学产量和表观收获指数的关系。结果表明,与叶绿素累积量有关的QTL位于D1a+Q、F、G、H、L和M连锁群上,每个QTL可解释表型变异的6.9%~23.4%。V6和R2期没有检测到2个年份均表达的QTL,而在R4期检测到4个在2个年份均表达的QTL(qccF.1、qccG.2、qccH.1和qccM.1),R6期仅检测到1个QTL(qccH.1)在2个年份均表达,该QTL在R4也表达。与叶绿素含量净增量有关的QTL位于B2和L连锁群上,在V6-R2时期没有检测到与叶绿素净增量有关的QTL,在B2和L连锁群上的两个QTL(qccB2-1.1和qccL.1)在R2-R4和R4-R6时期均表达,qccB2-1.1可解释表型变异的6.4%~9.8%,而qccL.1所解释表型变异达29.5%~31.3%。但这两个QTL在R2-R4和R4-R6时期表达的性质不同,且与2年均表达的籽粒产量QTL共位。这印证了生育后期叶绿素含量与籽粒产量间存在的极显著正相关。  相似文献   

9.
大豆根区逆境耐性的种质鉴定及其与根系性状的关系   总被引:8,自引:1,他引:8  
刘莹  盖钧镒  吕慧能 《作物学报》2005,31(9):1132-1137
依根系类型从黄淮海和长江中下游地区301份代表性材料中选取62份,以株高、叶龄、地上部干物重、地下部干物重为指标,采用平均隶属函数值方法鉴定了苗期耐旱性、苗期耐铝毒性,加上主茎节数、分枝数、单株荚数、单株粒数、百粒重等性状鉴定了后期耐旱性,并通过钒钼黄比色法测定植株P含量鉴定了苗期耐低磷性。筛选出1级苗期  相似文献   

10.
Summary Improvement of cookability is an important objective in breeding of food legumes. The present study was undertaken to investigate variation in cookability in soybean. Genetic variation was observed among lines from two crosses. Absence of associations between cookability and protein content, oil content and grain yield indicate that selection for cookability can be achieved without adversely affecting the expression of these characters.  相似文献   

11.
从83份黄淮海地区代表性材料中按根系类型选取28份,在苗期以株高、叶龄、根干质量和茎叶干质量隶属函数的平均值为指标进行2年耐旱性重复鉴定,从中筛选出晋豆14强耐旱型材料。比根干质量、比总根长、比根体积与耐旱隶属函数值均呈极显著正相关,可作为耐旱性的根系性状指标。利用科丰1号×南农1138-2衍生的RIL群体为材料,对耐旱相关根系性状采用主基因 多基因混合遗传模型分离分析法进行遗传分析。结果表明,该两亲本间比根干质量、比总根长、比根体积的遗传均为两对主基因加多基因模型,后两者主基因间有连锁(重组率4.30%,1.93%);主基因遗传率为62.26%~91.81%,多基因遗传率为2.99%~24.75%;耐旱相关根系性状各主要由1对主基因控制,另1对效应较小,三性状的改良均着重在主基因加性效应。  相似文献   

12.
R. J. Singh  T. Hymowitz 《Euphytica》1985,34(1):187-192
Summary The objective of the present paper is to provide information on the morphology and cytology of an intersub-generic hybrid (2n=59) between Glycine tomentella Hayata (2n=78) and G. max (L.) Merr. (2n=40) obtained through in vitro immature seed culture. The hybrid plant was slow in vegetative growth and twinning like the female parent but morphologically was intermediate between both parents for several traits. At metaphase I, the average chromosome associations and ranges for 25 cells were 44.0 I (37–51)+7.5 II (3–11). The plant was completely pollen and seed sterile. The present investigation suggests that wild perennial Glycine species can be exploited as either the male or female parent in wide hybridization programs with the soybean, G. max.  相似文献   

13.
大豆钾转运体基因GmKT12的克隆和信息学分析   总被引:1,自引:0,他引:1  
以钾高效和钾敏感型大豆品系为试验材料,设置低钾胁迫试验,在8个时间段取样提取RNA,利用Real time-PCR检测GmKT12基因的表达量,结果显示GmKT12基因在不同品系地上部和地下部表达水平有显著差异,其原因来自GmKT12基因的氨基酸序列和蛋白质结构的变异。从2个品系中分别克隆目的基因并对基因序列进行同源性及生物信息学分析表明,与GmKT12基因相似性在30%以上的同源基因有56个,GmKT12在进化树中的位置与Glyma18g18822最近;GmKT12编码蛋白为可溶性跨膜蛋白,具有多个磷酸化位点,该基因与信号转导有关,对大豆获取及转运钾离子可能起着关键作用。  相似文献   

14.
J.G. Manjaya  S.E. Pawar 《Euphytica》1999,106(3):205-208
Bacterial leaf pustule (BLP) caused by Xanthomonas campestris pv. glycines is an important disease of soybean. A new resistant source, P-4-2, showing an immune reaction in controlled conditions to BLP was crossed with the susceptible cultivar Monetta to study the inheritance of resistance. All F1 plants were susceptible. The F2 population segregated 15 susceptible: 1 resistant plants indicating the presence of duplicate recessive genes controlling resistance. This was further confirmed in the F3 generation. Two recessive genes conferring high levels of resistance in soybean to Xanthomonas campestris pv. glycines under controlled conditions are being reported here for the first time. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Summary Soybean DNA fingerprints were analyzed by digoxigenin-labeled oligonucleotide probes complementary to simple repetitive sequences. The clearest and most polymorphic patterns were obtained with (AAT)6 as a probe, with which all 47 soybean cultivars tested could be distinguished. However, DNA fingerprints of individuals within cultivars showed the same pattern. Using (CT)8, (GAA)5 or (AAGG)4 as probes, clear polymorphic patterns among cultivars and accessions in the subgenus Soja (Glycine max and Glycine soja) were not observed, while quite different patterns were found in accessions in the subgenus Glycine. The results suggest that G. max and G. soja are closer in their genome structure. DNA fingerprints of reciprocal crosses between cultivars and accessions in the subgenus Soja were similar, and contained bands of both parents. In an F2 population from these crosses, such bands segregated in a Mendelian fashion.  相似文献   

16.
Summary Bradyrhizobium japonicum strain G49 has been the only inoculum used in French soils. Soybean (Glycine max L. Merr.) cultivars were selected and tested according to their performances with this rhizobial strain. The aim of the present study was to determine the consequences of strain substitution on N2 fixation abilities of various genotypes. Three genotypes and cultivar Weber, in combination with B. japonicum strain G49 or SMGS1, were cultivated in pots and tested for nitrogenase activity under differing nitrogen nutrition conditions. The reliability of ARA (acetylene reduction activity) measurement for assessing symbiotic nitrogen fixation under the experimental conditions used was checked. Genotypic variability for symbiotic fixation activity was observed with each strain under soil culture conditions; important genotype x strain interactions were also involved. These results were corroborated for the protein yield and other yield component performances of the various genotype-strain associations. Thus, in France, the replacement of strain G49 with another one might result in the alteration of the relative agronomic performances of the soybean cultivars, since N2 fixation is considered as a major factor of soybean productivity.  相似文献   

17.
The peanut stunt virus (PSV) causes yield losses in soybean and reduced seed quality due to seed mottling. The objectives of this study were to determine the phenotypic reactions of soybean germplasms to inoculation with two PSV isolates (PSV-K, PSV-T), the inheritance of PSV resistance in soybean cultivars, and the locus of the PSV resistance gene. We investigated the PSV resistance of 132 soybean cultivars to both PSV isolates; of these, 73 cultivars exhibited resistance to both PSV isolates. Three resistant cultivars (Harosoy, Tsurunotamago 1 and Hyuga) were crossed with the susceptible cultivar Enrei. The crosses were evaluated in the F1, F2 and F2:3 generations for their reactions to inoculation with the two PSV isolates. In an allelism test, we crossed Harosoy and Tsurunotamago 1 with the resistant cultivar Hyuga. The results revealed that PSV resistance in these cultivars is controlled by a single dominant gene at the same locus. We have proposed Rpsv1, as the name of the resistance gene in Hyuga. We also constructed a linkage map using recombinant inbred lines between Hyuga × Enrei using 176 SSR markers. We mapped Rpsv1 near the Satt435 locus on soybean chromosome 7.  相似文献   

18.
Summary 135 soybean landraces and pure line selections from Kyushu district fo Japan were assayed for isozyme and seed protein loci in order to determine the genetic structure groups of summer and autumn maturing cultivars. Out of the 16 tested loci, Dial, Enp, Estl, and Ti exhibited a marked difference in allelic frequency between both groups. The summer cultuvar groups had a high frequency for Dial-b, Enp-b, Estl-a and Ti-b, whereas Dial-a, Enp-a, Estl-b, and Ti-a were predominant in the autumn groups. The analysis of multi-locus genotypes revealed that both groups mostly consisted of different multi-locus genotypes. The allelic combination Dial-b Enp-b Estl-a Ti-b was most frequently observed in the summer cultivars, whereas four genootypes, Dial-a Enp-a Estl-a Ti-a, Dial-a Enp-a Estl-b Ti-a, Dial-a Enp-b Estl-b and Dial-a Enp-a Estl-b Ti-b, occupied most of the autumn cultivars. These results indicated that both groups were appreciably differentiated from each other. The summer cultivar groups also included a few accessions having the multi-locus genotypes observed predominantly in the autumn groups or Acol-b charcteristic of the landraces native to northern Japan. It seems likely that the summer cultivar groups was not phyletically derived from a single common ancestor, but partly involves the landraces with early maturity derived from northern Japan. Dial, Enp, Estl and Ti are useful genetic markers ot trace the origin and dissemination paths of Japanse soybean landraces.  相似文献   

19.
The long juvenile period characteristic (LJP), which delays flowering under short day conditions, has been identified in soybean cultivars (Glycine max L. Merrill). This characteristic may be especially important as it increases the range of adaptation of soybean in low latitudes and gives greater flexibility for sowing periods within the same latitude. The inheritance of the long juvenile period was studied in the BR80-6778 soybean line to provide knowledge to support the development of cultivars adapted to short day conditions. Cultivars with classic flowering, Paraná, Bossier, Bragg and Davis, which flower early under short day conditions, were also used as parents in single crosses. They were crossed among themselves and with the genotypes with LJP, BR80-6778 and MG/BR 22 (Garimpo). The study was carried out under short day conditions (early sowings) in greenhouses and in the field at Embrapa National Soybean Research Center, Londrina, PR. Flowering was assessed daily. The results indicated that the BR89-6778 line shares a pair of alleles with the Paraná cultivar, and when associated with the cc allele retards flowering under short day conditions. The following genotype constitutions were attributed to the cultivars: Paraná (aaBBCC), Bossier (AabbCC), and BR80-6778 (aaBBcc). The combination of the genes aabb and aabbcc has a pronounced effect on the manifestation of the trait. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Saponins are sterols or triterpene glycosides that are widely distributed in plants. The biosynthesis of soybean saponins is thought to involve many kinds of glycosyltransferases, which is reflected in their structural diversity. Here, we performed linkage analyses of the Sg-3 and Sg-4 loci, which may control the sugar chain composition at the C-3 sugar moieties of the soybean saponin aglycones soyasapogenols A and B. The Sg-3 locus, which controls the production of group A saponin Af, was mapped to chromosome (Chr-) 10. The Sg-4 locus, which controls the production of DDMP saponin βa, was mapped to Chr-1. To elucidate the preference of sugar chain formation at the C-3 and C-22 positions, we analyzed the F2 population derived from a cross between a mutant variety, Kinusayaka (sg-10), for the sugar chain structure at C-22 position, and Mikuriya-ao (sg-3), with respect to the segregation of the composition of the group A saponins, and found that the formation of these sugar chains was independently regulated. Furthermore, a novel saponin, predicted to be A0-γg, 3-O-[β-d-galactopyranosyl (1→2)-β-d-glucuronopyranosyl]-22-O-α-l-arabinopyranosyl-soyasapogenol A, appeared in the hypocotyl of F2 individuals with genotype sg-10/sg-10 sg-3/sg-3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号