首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
A gradient micropolar elasticity is proposed based on first gradients of distortion and bend-twist tensors for an isotropic micropolar medium. This theory is an extension of the theory of micropolar elasticity with couple stresses together with gradient elasticity in a way that in addition to hyper stresses, hyper couple stresses also appear. In particular, the strain energy, besides its dependence upon the distortion and bend-twist terms of a micropolar medium (Cosserat continuum), depends also on distortion and bend-twist gradients. Using a simplified but rigorous version of this gradient theory, we can connect it to Eringen's nonlocal micropolar elasticity. In addition, it is used to study a screw dislocation in gradient micropolar elasticity. One important result is that we obtained nonsingular expressions for the force and couple stresses. The components of the force stress have maximum values near the dislocation line and those of the couple stress have maximum values at the dislocation line.  相似文献   

2.
A theory of gradient micropolar elasticity based on first gradients of distortion and bend-twist tensors for an isotropic micropolar medium has been proposed in Part I of this paper. Gradient micropolar elasticity is an extension of micropolar elasticity such that in addition to double stresses double couple stresses also appear. The strain energy depends on the micropolar distortion and bend-twist terms as well as on distortion and bend-twist gradients. We use a version of this gradient theory which can be connected to Eringen's nonlocal micropolar elasticity. The theory is used to study a straight-edge dislocation and a straight-wedge disclination. As one important result, we obtained nonsingular expressions for the force and couple stresses. For the edge dislocation the components of the force stress have extremum values near the dislocation line and those of the couple stress have extremum values at the dislocation line and for the wedge disclination the components of the force stress have extremum values at the disclination line and those of the couple stress have extremum values near the disclination line.  相似文献   

3.
The primary objective of this paper is to formulate the governing equations of shear deformable beams and plates that account for moderate rotations and microstructural material length scales. This is done using two different approaches: (1) a modified von Kármán non-linear theory with modified couple stress model and (2) a gradient elasticity theory of fully constrained finitely deforming hyperelastic cosserat continuum where the directors are constrained to rotate with the body rotation. Such theories would be useful in determining the response of elastic continua, for example, consisting of embedded stiff short fibers or inclusions and that accounts for certain longer range interactions. Unlike a conventional approach based on postulating additional balance laws or ad hoc addition of terms to the strain energy functional, the approaches presented here extend existing ideas to thermodynamically consistent models. Two major ideas introduced are: (1) inclusion of the same order terms in the strain–displacement relations as those in the conventional von Kármán non-linear strains and (2) the use of the polar decomposition theorem as a constraint and a representation for finite rotations in terms of displacement gradients for large deformation beam and plate theories. Classical couple stress theory is recovered for small strains from the ideas expressed in (1) and (2). As a part of this development, an overview of Eringen׳s non-local, Mindlin׳s modified couple stress theory, and the gradient elasticity theory of Srinivasa–Reddy is presented.  相似文献   

4.
5.
The stability problem of cylindrical shells is addressed using higher-order continuum theories in a generalized framework. The length-scale effect which becomes prominent at microscale can be included in the continuum theory using gradient-based nonlocal theories such as the strain gradient elasticity theories. In this work, expressions for critical buckling stress under uniaxial compression are derived using an energy approach. The results are compared with the classical continuum theory, which can be obtained by setting the length-scale parameters to zero. A special case is obtained by setting two length scale parameters to zero. Thus, it is shown that both the couple stress theory and classical continuum theory forms a special case of the strain gradient theory. The effect of various parameters such as the shell-radius, shell-length, and length-scale parameters on the buckling stress are investigated. The dimensions and constants corresponding to that of a carbon nanotube, where the length-scale effect becomes prominent, is considered for this investigation.  相似文献   

6.
Experiments and theory in strain gradient elasticity   总被引:2,自引:0,他引:2  
Conventional strain-based mechanics theory does not account for contributions from strain gradients. Failure to include strain gradient contributions can lead to underestimates of stresses and size-dependent behaviors in small-scale structures. In this paper, a new set of higher-order metrics is developed to characterize strain gradient behaviors. This set enables the application of the higher-order equilibrium conditions to strain gradient elasticity theory and reduces the number of independent elastic length scale parameters from five to three. On the basis of this new strain gradient theory, a strain gradient elastic bending theory for plane-strain beams is developed. Solutions for cantilever bending with a moment and line force applied at the free end are constructed based on the new higher-order bending theory. In classical bending theory, the normalized bending rigidity is independent of the length and thickness of the beam. In the solutions developed from the higher-order bending theory, the normalized higher-order bending rigidity has a new dependence on the thickness of the beam and on a higher-order bending parameter, bh. To determine the significance of the size dependence, we fabricated micron-sized beams and conducted bending tests using a nanoindenter. We found that the normalized beam rigidity exhibited an inverse squared dependence on the beam's thickness as predicted by the strain gradient elastic bending theory, and that the higher-order bending parameter, bh, is on the micron-scale. Potential errors from the experiments, model and fabrication were estimated and determined to be small relative to the observed increase in beam's bending rigidity. The present results indicate that the elastic strain gradient effect is significant in elastic deformation of small-scale structures.  相似文献   

7.
In recent years there have been many papers that considered the effects of material length scales in the study of mechanics of solids at micro- and/or nano-scales. There are a number of approaches and, among them, one set of papers deals with Eringen's differential nonlocal model and another deals with the strain gradient theories. The modified couple stress theory, which also accounts for a material length scale, is a form of a strain gradient theory. The large body of literature that has come into existence in the last several years has created significant confusion among researchers about the length scales that these various theories contain. The present paper has the objective of establishing the fact that the length scales present in nonlocal elasticity and strain gradient theory describe two entirely different physical characteristics of materials and structures at nanoscale. By using two principle kernel functions, the paper further presents a theory with application examples which relates the classical nonlocal elasticity and strain gradient theory and it results in a higher-order nonlocal strain gradient theory. In this theory, a higher-order nonlocal strain gradient elasticity system which considers higher-order stress gradients and strain gradient nonlocality is proposed. It is based on the nonlocal effects of the strain field and first gradient strain field. This theory intends to generalize the classical nonlocal elasticity theory by introducing a higher-order strain tensor with nonlocality into the stored energy function. The theory is distinctive because the classical nonlocal stress theory does not include nonlocality of higher-order stresses while the common strain gradient theory only considers local higher-order strain gradients without nonlocal effects in a global sense. By establishing the constitutive relation within the thermodynamic framework, the governing equations of equilibrium and all boundary conditions are derived via the variational approach. Two additional kinds of parameters, the higher-order nonlocal parameters and the nonlocal gradient length coefficients are introduced to account for the size-dependent characteristics of nonlocal gradient materials at nanoscale. To illustrate its application values, the theory is applied for wave propagation in a nonlocal strain gradient system and the new dispersion relations derived are presented through examples for wave propagating in Euler–Bernoulli and Timoshenko nanobeams. The numerical results based on the new nonlocal strain gradient theory reveal some new findings with respect to lattice dynamics and wave propagation experiment that could not be matched by both the classical nonlocal stress model and the contemporary strain gradient theory. Thus, this higher-order nonlocal strain gradient model provides an explanation to some observations in the classical and nonlocal stress theories as well as the strain gradient theory in these aspects.  相似文献   

8.
Shear band localization is investigated by a strain-gradient-enhanced damage model for quasi-brittle geomaterials. This model introduces the strain gradients and their higher-order conjugate stresses into the framework of continuum damage mechanics. The influence of the strain gradients on the constitutive behaviour is taken into account through a generalized damage evolutionary law. A weak-form variational principle is employed to address the additional boundary conditions introduced by the incorporation of the strain gradients and the conjugate higher-order stresses. Damage localization under simple shear condition is analytically investigated by using the theory of discontinuous bifurcation and the concept of the second-order characteristic surface. Analytical solutions for the distributions of strain rates and strain gradient rates, as well as the band width of localised damage are found. Numerical analysis demonstrates the shear band width is proportionally related to the internal length scale through a coefficient function of Poisson’s ratio and a parameter representing the shape of uniaxial stress–strain curve. It is also shown that the obtained distributions of strains and strain gradients are well in accordance with the underlying assumptions for the second-order discontinuous shear band boundary and the weak discontinuous bifurcation theory.  相似文献   

9.
A theoretical framework is presented for the statics and kinematics of discrete Cosserat-type granular materials. In analogy to the force and moment equilibrium equations for particles, compatibility equations for closed loops are formulated in the two-dimensional case for relative displacements and relative rotations at contacts. By taking moments of the equilibrium equations, micromechanical expressions are obtained for the static quantities average Cauchy stress tensor and average couple stress tensor. In analogy, by taking moments of the compatibility equations, micromechanical expressions are obtained for the (infinitesimal) kinematic quantities average rotation gradient tensor and average Cosserat strain tensor in the two-dimensional case. Alternatively, these expressions for the average Cauchy stress tensor and the average couple stress tensor are obtained from considerations of the equivalence of the continuum force and couple traction vectors acting on a plane and the resultant of the discrete forces and couples acting on this plane. In analogy, the expressions for the average rotation gradient tensor and the average Cosserat strain tensor are obtained from considerations of the change of length and change of rotation of a line element in the two-dimensional case. It is shown that the average particle stress tensor is always symmetrical, contrary to the average stress tensor of an equivalent homogenized continuum. Finally, discrete analogues of the virtual work and complementary virtual work principles from continuum mechanics are derived.  相似文献   

10.
This work is concerned with incorporating the kinematic and stress effects of excess dislocations in a constitutive model for the elastoplastic behavior of crystalline materials. The foundation of the model is a three term multiplicative decomposition of the deformation gradient in which the two classical terms of plastic and elastic deformation are included along with an additional term for long range strain due to the collective effects of excess dislocations. The long range strain is obtained from an assumed density of Volterra edge dislocations and is directly related to gradients in slip. A new material parameter emerges which is the size the region about a continuum point that contributes to long range strains.Using Hookean elasticity, the stress at a point is linearly related to the sum of the elastic plus the long range strain fields. However, the driving force for slip is postulated to be due only to the elastic stress so that the long range stress is a back stress in the constitutive relationship for plastic deformation. A consistent balance of the total deformation rate with the three proposed mechanisms of deformation leads to a set of differential equations that can be solved for the elastic stress, rotation and pressure which then implicitly defines the material state and equilibrium stress. Results from the simulation of a tapered tensile specimen demonstrate that the constitutive model exhibits isotropic and kinematic type hardening effects as well as changes in the pattern of plastic deformation and necking when compared to a material without slip gradient effects.  相似文献   

11.
In this paper, we develop a new non-ordinary state-based peridynamic method to solve transient dynamic solid mechanics problems. This new peridynamic method has advantages over the previously developed bond-based and ordinary state-based peridynamic methods in that its bonds are not restricted to central forces, nor is it restricted to a Poisson’s ratio of 1/4 as with the bond-based method. First, we obtain non-local nodal deformation gradients that are used to define nodal strain tensors. The deformation gradient tensors are used with the nodal strain tensors to obtain rate of deformation tensors in the deformed configuration. The polar decomposition of the deformation gradient tensors are then used to obtain the nodal rotation tensors which are used to rotate the rate of deformation tensors and previous Cauchy stress tensors into an unrotated configuration. These are then used with conventional Cauchy stress constitutive models in the unrotated state where the unrotated Cauchy stress rate is objective. We then obtain the unrotated Cauchy nodal stress tensors and rotate them back into the deformed configuration where they are used to define the forces in the nodal connecting bonds. As a first example we quasi-statically stretch a bar, hold it, and then rotate it ninety degrees to illustrate the methods finite rotation capabilities. Next, we verify our new method by comparing small strain results from a bar fixed at one end and subjected to an initial velocity gradient with results obtained from the corresponding one-dimensional small strain analytical solution. As a last example, we show the fracture capabilities of the method using both a notched and un-notched bar.  相似文献   

12.
基于Hellinger-Reissner变分原理的应变梯度杂交元设计   总被引:2,自引:0,他引:2  
李雷  吴长春  谢水生 《力学学报》2005,37(3):301-306
从一般的偶应力理论出发,基于Hellinger-Reissner变分原理,通过对有限元 离散体系的位移试解引入非协调位移函数,得到了偶应力理论下有限元离散系统的能量相容 条件,并由此建立了应变梯度杂交元的应力函数优化条件. 根据该优化条件,构造了一 个C0类的平面4节点梯度杂交元,数值结果表明,该单元对可压缩和不可压缩状态的 梯度材料均可给出合理的数值结果,再现材料的尺度效应.  相似文献   

13.
14.
This paper presents a general nonlinear theory of elastic shells for large deflections and finite strains in reference to a certain natural state. By expanding the displacement components into power series in the coordinate θ3 normal to the undeformed middle surface of shells, the expansions of the Cauchy-Green strain tensors are expressed in terms of these expanded displacement components. Through the modified Hellinger-Reissner variational principle for a three-dimensional elastic continuum, a set of the fundamental shell equations is derived in terms of the expanded Cauchy-Green strain tensors and Kirchhoff stress resultants. The Love-Kirchhoff hypothesis is not assumed and higher order stretching and bending are taken into consideration. For elastic shells of isotropic materials, assuming the strain-energy to be an analytic function of the strain measures, general nonlinear constitutive equations are then derived. Thus, a complete and consistent two-dimensional shell theory incorporating the geometrical and physical nonlinearities is established. The classical theories of shells are directly derivable from the present results by proper truncations of the series.  相似文献   

15.
Gradient theories, as a regularized continuum mechanics approach, have found wide applications for modeling strain localization failure process. This paper presents a second gradient stress–strain damage elasticity theory based upon the method of virtual power. The theory considers the strain gradient and its conjugated double stresses. Instead of introducing an intrinsic material length scale into the constitutive law in an ad hoc fashion, a microstructural granular mechanics approach is applied to derive the higher-order constitutive coefficients such that the internal length scale parameter reflects the natural granularity of the underlying material microstructure. The derivations of the required damage constitutive relationships, the strong form governing equations as well as its weak form for the second gradient model are described. The recently popularized Element-Free Galerkin (EFG) method is then employed to discretize the weak form equilibrium equation for accommodating the resultant higher-order continuity requirements and further handling the mesh sensitivity problem. Numerical examples for shear band simulations show that the proposed second gradient continuum model can produce stable, accurate as well as mesh-size independent solutions without a priori assumption of the shear band path.  相似文献   

16.
There exist two frameworks of strain gradient plasticity theories to model size effects observed at the micron and sub-micron scales in experiments. The first framework involves the higher-order stress and therefore requires extra boundary conditions, such as the theory of mechanism-based strain gradient (MSG) plasticity [J Mech Phys Solids 47 (1999) 1239; J Mech Phys Solids 48 (2000) 99; J Mater Res 15 (2000) 1786] established from the Taylor dislocation model. The other framework does not involve the higher-order stress, and the strain gradient effect come into play via the incremental plastic moduli. A conventional theory of mechanism-based strain gradient plasticity is established in this paper. It is also based on the Taylor dislocation model, but it does not involve the higher-order stress and therefore falls into the second strain gradient plasticity framework that preserves the structure of conventional plasticity theories. The plastic strain gradient appears only in the constitutive model, and the equilibrium equations and boundary conditions are the same as the conventional continuum theories. It is shown that the difference between this theory and the higher-order MSG plasticity theory based on the same dislocation model is only significant within a thin boundary layer of the solid.  相似文献   

17.
Beltrami-Mitchell equations for non-linear elasticity theory are derived using the first Piola-Kirchhoff stress and the deformation gradient tensors as field variables so as to yield linear equilibrium and compatibility equations, respectively. In the derivation it is assumed that a strain energy density and, correspondingly, a complementary strain energy density exist, and satisfy the axiom of objectivity. Substitution for the deformation gradient in the compatibility equations yields non-linear differential equations in terms of the first Piola-Kirchhoff stress tensor which may be regarded as the Beltrami-Mitchell equations of non-linear elasticity. The equations are also derived for “semi-linear” isotropic elastic materials and the theory is illustrated by three simple examples.  相似文献   

18.
The paper deals with a consistent and systematic general framework for the development of anisotropic continuum damage in ductile metals based on thermodynamic laws and nonlocal theories. The proposed model relies on finite strain kinematics based on the consideration of damaged as well as fictitious undamaged configurations related via metric transformation tensors which allow for the interpretation of damage tensors. The formulation is accomplished by rate-independent plasticity using a nonlocal yield condition of Drucker–Prager type, anisotropic damage based on a nonlocal damage growth criterion as well as non-associated flow and damage rules. The nonlocal theory of inelastic continua is established to be able to take into account long-range microstructural interaction. The approach incorporates macroscopic interstate variables and their higher-order gradients which properly describe the change in the internal structure and investigate the size effect of statistical inhomogeneity of the heterogeneous material. The idea of bridging length-scales is made by using higher-order gradients in the evolution equations of the equivalent inelastic strain measures which leads to a system of elliptic partial differential equations which is solved using the finite difference method at each iteration of the loading step and the displacement-based finite element procedure is governed by the standard principle of virtual work. Numerical simulations of the elastic–plastic deformation behavior of damaged solids demonstrate the efficiency of the formulation. Tension tests undergoing large strains are used to investigate the damage growth in high strength steel. The influence of various model parameters on the prediction of the deformation and localization of ductile metals is discussed.  相似文献   

19.
曹彩芹  陈晶博  李东波 《力学学报》2022,54(11):3088-3098
具有尺度依赖的挠曲电效应在器件的设计中扮演着越来越关键的角色, 研究人员在微纳米尺度多物理场分析中进行了大量工作. 基于考虑挠曲电和电场梯度效应的弹性介电材料非经典理论, 以二维纳米板为例, 通过理论建模, 分析纳米板在弯曲问题中的力?电耦合行为. 根据Mindlin假设给出板的位移场和电势场的一阶截断, 选取板的材料为立方晶体(m3m点群), 将广义三维本构方程代入到高阶应力、高阶偶应力、高阶电位移和高阶电四极矩的表达式中得到相应的二维本构方程, 利用弹性电介质变分原理得到板的控制方程和边界上的线积分等式, 分别将二维本构方程和边界上外法线的方向余弦代入, 得到板的高阶弯曲方程、高阶电势方程以及对应的四边简支边界条件. 利用四边简支矩形板的高阶弯曲方程、高阶电势方程和相应的边界条件, 根据Navier解理论, 求解纳米板的电势场, 重点分析电场梯度对板内一阶电势的影响. 数值计算结果表明: 电场梯度对纳米板中由挠曲电效应产生的一阶电势有削弱作用, 且材料参数g11越大, 一阶电势受到的削弱越大; 同时电场梯度的存在消除了纳米板在受横向集中载荷作用时一阶电势的奇异性. 本文是对具有挠曲电效应和电场梯度效应的纳米板结构分析理论的一个扩展, 为微纳米尺度器件的结构设计提供参考.   相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号