首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The imperfection sensitivity of in-plane modulus and fracture toughness is explored for five morphologies of 2D lattice: the isotropic triangular, hexagonal and Kagome lattices, and the orthotropic 0/90° and ±45° square lattices. The elastic lattices fail when the maximum local tensile stress at any point attains the tensile strength of the solid. The assumed imperfection comprises a random dispersion of the joint position from that of the perfect lattice. Finite element simulations reveal that the knockdown in stiffness and toughness are sensitive to the type of lattice: the Kagome and square lattices are the most imperfection sensitive. Analytical models are developed for the dependence of modes I and II fracture toughness of the 0/90° and ±45° lattices upon relative density. These models explain why the mode II fracture toughness of the 0/90° lattice has an unusual functional dependence upon relative density.  相似文献   

2.
The structural reliability of many brittle materials such as structural ceramics relies on the occurrence of intergranular, as opposed to transgranular, fracture in order to induce toughening by grain bridging. For a constant grain boundary strength and grain boundary toughness, the current work examines the role of grain strength, grain toughness, and grain angle in promoting intergranular fracture in order to maintain such toughening. Previous studies have illustrated that an intergranular path and the consequent grain bridging process can be partitioned into five distinct regimes, namely: propagate, kink, arrest, stall, and bridge. To determine the validity of the assumed intergranular path, the classical penetration/deflection problem of a crack impinging on an interface is re-examined within a cohesive zone framework for intergranular and transgranular fracture. Results considering both modes of propagation, i.e., a transgranular and intergranular path, reveal that crack-tip shielding is a natural outcome of the cohesive zone approach to fracture. Cohesive zone growth in one mode shields the opposing mode from the stresses required for cohesive zone initiation. Although stable propagation occurs when the required driving force is equivalent to the toughness for either transgranular or intergranular fracture, the mode of propagation depends on the normalized grain strength, normalized grain toughness, and grain angle. For each grain angle, the intersection of single path and multiple path solutions demarcates “strong” grains that increase the macroscopic toughness and “weak” grains that decrease it. The unstable transition to intergranular fracture reveals that an increasing grain toughness requires a growing region of the transgranular cohesive zone be near the cohesive strength. The inability of the body to provide the requisite stress field yields an overdriven and unstable configuration. The current results provide restrictions for the achievement of substantial toughening through intergranular fracture.  相似文献   

3.
The paper presents a fracture model for ferroelectric materials taking into account the hysteretic domain switching processes near to the tip of a macroscopic crack. The model is based on the balance of energy supplied by the driving forces, on the one hand, and the total of energies either dissipated by domain switching, stored in the crack wake region or consumed by the formation of new fracture surface, on the other hand. An internal variable theory describes the nonlinear coupled electromechanical material response within the framework of a three-dimensional continuum model. For simplicity, the complex orientation distribution function of domains in a polycrystalline ceramic is approximated by only six representative space orientations. The theory predicts certain dimensionless material parameter combinations which govern the change of fracture toughness under the application of different mechanical and electrical loadings. A comparison with data available in the literature for barium titanate ceramics yields a reasonable coincidence.  相似文献   

4.
A micromechanical model is developed for grain bridging in monolithic ceramics. Specifically, bridge formation of a single, non-equiaxed grain spanning adjacent grains is addressed. A cohesive zone framework enables crack initiation and propagation along grain boundaries. The evolution of the bridge is investigated through a variance in both grain angle and aspect ratio. We propose that the bridging process can be partitioned into five distinct regimes of resistance: propagate, kink, arrest, stall, and bridge. Although crack propagation and kinking are well understood, crack arrest and subsequent “stall” have been largely overlooked. Resistance during the stall regime exposes large volumes of microstructure to stresses well in excess of the grain boundary strength. Bridging can occur through continued propagation or reinitiation ahead of the stalled crack tip. The driving force required to reinitiate is substantially greater than the driving force required to kink. In addition, the critical driving force to reinitiate is sensitive to grain aspect ratio but relatively insensitive to grain angle. The marked increase in crack resistance occurs prior to bridge formation and provides an interpretation for the rapidly rising resistance curves which govern the strength of many brittle materials at realistically small flaw sizes.  相似文献   

5.
6.
Piezoelectric systems like multilayer actuators are susceptible to damage by crack propagation induced by strain incompatibilities. These can arise under electric fields for example between the electroded and external regions. Such incompatibilities have been realised in thin rectangular model specimens from PZT-piezoelectric ceramics with top and bottom electrodes only close to one edge. Under an electric field, controlled crack propagation has been observed in situ in an optical microscope. The crack paths are reproducible with very high accuracy. Small electrode widths lead to straight cracks with two transitions between stable and unstable crack growth regions, while large electrode widths result in curved cracks with four transitions. Fracture mechanics analysis is able to explain the different crack paths. An iteration method is developed to simulate the curved crack propagation also for strong curvature of the crack paths using the finite element method. The computed crack contours exhibit excellent quantitative agreement with the experiment with respect to their shape, the stages of stable and unstable crack propagation and the transitions between them. Finally, also the crack length as a function of the electric field can be predicted.  相似文献   

7.
This paper focuses on the intergranular fracture of polycrystalline materials, where a detailed model at the meso-scale is translated onto the macro-level through a proposed homogenization theory. The bottom-up strategy involves the introduction of an additional macro-kinematic field to characterize the average displacement jump within the unit cell. Together with the standard macro-strain field, the underlying processes are propagated onto the macro-scale by imposing the equivalence of power and energy at the two scales. The set of macro-governing equations and constitutive relations are next extracted naturally as per standard thermodynamics procedure. The resulting homogenized microforce balance recovers the so-called ‘implicit’ gradient expression with a transient nonlocal interaction. The homogenized gradient damage model is shown to fully regularize the softening behavior, i.e. the structural response is made mesh-independent, with the damage strain correctly localizing into a macroscopic crack, hence resolving the spurious damage growth observed in many conventional gradient damage models. Furthermore, the predictive capability of the homogenized model is demonstrated by benchmarking its solutions against reference meso-solutions, where a good match is obtained with minimal calibrations, for two different grain sizes.  相似文献   

8.
9.
Recent work has suggested that the heterogeneous distribution of mechanical properties in natural and synthetic materials induces a toughening mechanism that leads to a more robust structural response in the presence of cracks, defects or other types of flaws. Motivated by this, we model an elastic solid with a Young′s modulus distribution described by a Gaussian process. We study the pristine system using both a continuum and a discrete model to establish a link between the microscale and the macroscale in the presence of disorder. Furthermore, we analyze a flawed discrete particle system and investigate the influence of heterogeneity on the fracture mechanical properties of the solid. We vary the variability and correlation length of the Gaussian process, thereby gaining fundamental insights into the effect of heterogeneity and the essential length scales of heterogeneity critical to enhanced fracture properties. As previously shown for composites with complex hierarchical architectures, we find that materials with disordered elastic fields toughen by a ‘distribution-of-weakness’ mechanism inducing crack arrest and stress delocalization. In our systems, the toughness modulus can increase by up to 30% due to an increase in variability in the elastic field. Our work presents a foundation for stochastic modeling in a particle-based micromechanical environment that can find broad applications within natural and synthetic materials.  相似文献   

10.
The state of stress in and around reinforcements governs a number of physical processes in composite (multi-phase) materials, including the initiation of damage by either reinforcement cracking or interfacial decohesion. The stresses in the reinforcements have been observed to depend on the spatial distribution of the reinforcements, although the exact correlation is unclear. The present work determines the reinforcement stress for different reinforcement arrangements, ranging from a linear array of three uniformly spaced particles, to random and clustered microstructures. The stress calculations for elastic matrices were undertaken using a computationally efficient iterative technique. The technique was validated by comparing the results to finite element models, and the range of validity was determined. For the three-particle arrangements, the maximum reinforcement stress was observed when the particles were close to each other along the line of loading (a vertical arrangement). On the other hand, when the particle arrangement made a large angle with the loading direction, the reinforcement stress was low. Similar observations were recorded for the random and clustered arrangements where the location of the maximum reinforcement stress coincided with a vertical arrangement. The present work also develops a scheme for determining ‘representative volume elements’ for composite micromechanical models, based on the length scales of stress field interactions. These observations can be used to rationalize damage evolution mechanisms in commercial composites, and aid the development of physically based failure models for such materials.  相似文献   

11.
This article evaluates the effect of material inhomogeneities on the crack-tip driving force in general inhomogeneous bodies and reports results for bimaterial composites. The theoretical model, based on Eshelby material forces, makes no assumptions about the distribution of the inhomogeneities or the constitutive properties of the materials. Inhomogeneities are modeled by making the stored energy have an explicit dependence on the reference coordinates. Then the material inhomogeneity effect on the crack-tip driving force is quantified by the term Cinh, which is the integral of the gradient of the stored energy in the direction of crack growth. The model is demonstrated by two model problems: (i) bimaterial elastic composite using asymptotic solutions and (ii) graded elastic and elastic-plastic compact tension specimen using numerical methods for stress analysis.  相似文献   

12.
Oblique indentation of power-law creeping solids by a rigid die is analysed in three dimensions with perfectly plastic behaviour emerging as an asymptotic case. Indenter profiles are prescribed to be axisymmetric for simplicity but not by necessity. Invariance and generality is aimed at, as the problem is governed by only four essential parameters, i.e. the die profile, p, the indentation angle, γ, the power-law exponent, n, and the coefficient of friction, μ. The solution strategy is based on a self-similar transformation resulting in a reduced problem corresponding to flat die indentation of complete contact. The reduced auxiliary problem, being independent of loading, history and time, was solved by a three-dimensional finite element analysis characterized by high accuracy. Subsequently, cumulative superposition was used to resolve the original problem and global and invariant relations between force, depth and contact area were determined. Detailed results are given for the location and shape of the contact region and stick/slip contours as well as for local states of surface stresses and deformation at flat and spherical indenters. Due to the asymmetry prevailing, it was found that in the spherical case, contact contours proved to be oval and shifted, although with normal and tangential forces only weakly coupled. Finite friction as compared to full adhesion proved to have only a minor effect on global relations. The framework laid down may be applied to the contact of structural assemblies subjected especially to elevated temperatures and also to various issues such as compaction of powder aggregates, flattening of rough surfaces and plastic impact.  相似文献   

13.
Constraint effects in adhesive joint fracture are investigated by modelling the adherents as well as a finite thickness adhesive layer in which a single row of cohesive zone elements representing the fracture process is embedded. Both the adhesive and the adherents are elastic-plastic with strain hardening. The bond toughness Γ (work per unit area) is equal to Γ0+Γp, where Γ0 is the intrinsic work of fracture associated with the embedded cohesive zone response and Γp is the extra contribution to the bond toughness arising from plastic dissipation and stored elastic energy within the adhesive layer. The parameters of the model are identified from experiments on two different adhesives exhibiting very different fracture properties. Most of the tests were performed using the wedge-peel test method for a variety of adhesives, adherents and wedge thicknesses. The model captures the constraint effects resulting from the change in Γp: (i) the plastic dissipation increases with increasing bond line thickness in the fully plastic regime and then decreases to reach a constant value for very thick adhesive layers; (ii) the plastic dissipation in the fully plastic regime increases drastically as the thickness of the adherent decreases. Finally, this model is used to assess a simpler approach which consists of simulating the full adhesive layer as a single row of cohesive elements.  相似文献   

14.
A three-dimensional micromechanical unit cell model for particle-filled materials is presented. The cell model is based on a Voronoi tessellation of particles arranged on a body-centered cubic (BCC) array. The three-dimensionality of the present cell model enables the study of several deformation modes, including uniaxial, plane strain and simple shear deformations, as well as arbitrary principal stress states.The unit cell model is applied to studies on the micromechanical and macromechanical behavior of rubber-toughened polycarbonate. Different load cases are examined, including plane strain deformation, simple shear deformation and principal stress states. For a constant macroscopic strain rate, the different load cases show that the macroscopic flow strength of the blend decreases with an increase in void volume fraction, as expected. The main mechanism for plastic deformation is broad shear banding across inter-particle ligaments. The distributed nature of plastic straining acts to reduce the amount of macroscopic strain softening in the blend as the initial void volume fraction is increased. In the case of plane strain deformation, the plastic flow is observed to initiate across inter-particle ligaments in the direction of constraint. This particular mode of deformation could not have been captured using a two-dimensional, plane strain idealization of cylindrical voids in a matrix.The potential for localized crazing and/or cavitation in the matrix is addressed. It is observed that the introduction of voids acts to relieve hydrostatic stress in the matrix material, compared to the homopolymer. It is also seen that the predicted peak hydrostatic stress in the matrix is higher under plane strain deformation than under triaxial tension (with equal lateral stresses), for the same macroscopic stress triaxiality.The effect of void volume fraction on the macroscopic uniaxial tension behavior of the different blends is examined using a Considère construction for dilatant materials. The natural draw ratio was predicted to decrease with an increase in void volume fraction.  相似文献   

15.
16.
A computational approach is proposed to predict the sliding wear caused by a loaded spherical pin contacting a rotating disc, a condition typical of the so-called pin-on-disc test widely used in tribological studies. The proposed framework relies on the understanding that, when the pin contacts and slides on the disc, a predominantly plane strain region exists at the centre of the disc wear track. The wear rate in this plane strain region can therefore be determined from a two dimensional idealisation of the contact problem, reducing the need for computationally expensive three dimensional contact analyses. Periodic unit cell techniques are used in conjunction with a ratchetting-based failure criterion to predict the wear rate in the central plane strain region. The overall three dimensional wear rate of the disc is then determined by scaling the plane strain wear rate with a conversion factor related to the predicted shape of the wear track. The approach is used to predict pin-on-disc test data from an Al-Si coating using a tungsten carbide pin. The predicted results are found to be consistent with measured data.  相似文献   

17.
Micromechanics of coalescence in ductile fracture   总被引:2,自引:0,他引:2  
Significant progress has been recently made in modelling the onset of void coalescence by internal necking in ductile materials. The aim of this paper is to develop a micro-mechanical framework for the whole coalescence regime, suitable for finite-element implementation. The model is defined by a set of constitutive equations including a closed form of the yield surface along with appropriate evolution laws for void shape and ligament size. Normality is still obeyed during coalescence. The derivation of the evolution laws is carefully guided by coalescence phenomenology inferred from micromechanical unit-cell calculations. The major implication of the model is that the stress carrying capacity of the elementary volume vanishes as a natural outcome of ligament size reduction. Moreover, the drop in the macroscopic stress accompanying coalescence can be quantified for many initial microstructures provided that the microstructure state is known at incipient coalescence. The second part of the paper addresses a more practical issue, that is the prediction of the acceleration rate δ in the Tvergaard-Needleman phenomenological approach to coalescence. For that purpose, a Gurson-like model including void shape effects is used. Results are presented and discussed in the limiting case of a non-hardening material for different initial microstructures and various stress states. Predicted values of δ are extremely sensitive to stress triaxiality and initial spacing ratio. The effect of initial porosity is significant at low triaxiality whereas the effect of initial void shape is emphasized at high triaxiality.  相似文献   

18.
Fracture of a thin ductile layer sandwiched between stiff substrates often results from growth and coalescence of microscopic cavities ahead of an extending crack. Cavitation induced by plastic flow in a confined, ductile layer is analyzed here to evaluate the interfacial fracture toughness of such sandwich structures. For rigid-plastic materials, a new method is proposed in which the potential flow field of a fluid is used to approximate the plastic deformation. The principle of virtual work rate is applied to determine the equivalent traction-separation law. The method is demonstrated and validated for spherically symmetric cavity growth, for which an exact solution exists. We then study in detail the growth of an initially spherical cavity in a cylindrical bar of finite length subject to uniform traction at its ends. The results show that the stress-separation curves depend strongly on initial cavity size and the strain-hardening exponent, and weakly on the nominal strain. The method has clear advantages over numerical methods, such as finite-element analysis, for parametric study of cavity growth with large plastic deformation.  相似文献   

19.
The plastic zone of the growing mode III crack in an elastic perfectly plastic solid consists of two sectors in contact with each other. The sector closer to the crack plane, first studied analytically by Chitaley and McClintock (CM), consists of a fan of straight maximum shear stress trajectories that are focused on the crack tip. The other sector, first analyzed numerically by Dean and Hutchinson (DH), is a ‘radial’ fan of straight lines that are not focused at the crack tip or at another common point. In this paper it is shown with use of the dislocation density field that the need that the stress magnitude in the plastic wake be below the yield stress requires the existence of an unfocused fan in the DH sector. It appears unlikely that this result can be obtained without explicit use of dislocations.  相似文献   

20.
A numerical simulation for predicting the axial creep-rupture lifetime of continuous fiber-reinforced metal matrix composites is proposed, based on the finite element method. The simulation model is composed of line elements representing the fibers and four-node isoparametric plane elements representing the matrix. While the fibers behave as an elastic body at all times, the matrix behaves as an elasto-plastic body at the loading process and an elasto-plastic creep body at the creep process. It is further assumed in the simulation that the fibers are fractured not only in stress criterion but time-dependently with random nature. Simulation results were compared with the creep-rupture lifetime data of a boron-aluminum composite with 10% fiber volume fraction experimentally obtained. The simulated creep-rupture lifetimes agreed well with the averages of the experimental data. The proposed simulation is further carried out to predict a possibility of creep-rupture for the composite without time-dependent fiber breakage. It is finally concluded that the creep-rupture of a boron-aluminum composite is closely related with the shear stress relaxation occurring in the matrix as well as time-dependent fiber breakage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号