首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CaTiO3:Pr3+ phosphors codoped with Bi3+ ions were synthesized by a peroxide-based route (PBR). The effect of codopants on the structural and luminescence properties was studied. Boric acid used as flux material was proved to be effective in improving the luminescence property. The phosphors prepared by the PBR method showed advantages of lower sintering temperature, shorter heating time, and small grain size. The CaTiO3:Pr3+,Bi3+ demonstrated to be a potential red-emitting phosphor for white light-emitting diodes.  相似文献   

2.
Novel water-based core/shell CdTeSe/ZnS quantum dots (QDs) were synthesized by aqueous method. The CdTeSe/ZnS QDs were investigated by high resolution transmission electron microscopy, energy dispersive spectrometry, UV–vis absorption spectra, and photoluminescence spectrum. The as-prepared QDs capped with ZnS shell were spherical in shape with an excellent quantum yield of 16% and emitted bright yellow light. In addition, the CdTeSe/ZnS QDs can be excited by blue or near-UV region, which is an advantage over wavelength converters for white light-emitting diodes (LEDs). White LEDs based on CdTeSe/ZnS QDs, commercially known as Y3Al5O12:Ce3+ (YAG:Ce), and hybrid phosphor of CdTeSe/ZnS QDs and YAG:Ce, were fabricated. The luminescent properties of the resultant white LEDs were evaluated. The higher red-component in the emission spectrum from CdTeSe/ZnS QDs increased the color rendering index (CRI) value of the commercial YAG:Ce-based white LEDs, and the hybrid phosphor-based white LED had CIE-1993 color coordinate, color temperature, and CRI values of (0.3125, 0.2806), 7108 K and 83.3, respectively.  相似文献   

3.
ZnS nanorods were synthesized by microwave assisted chemical method. Polyvinylpyrrolidone (PVP) was used as a capping agent to stabilize the nanostructure. Synthesized ZnS nanorods were characterized by X-ray diffraction (XRD), Energy dispersive X-ray analysis (EDAX), Transmission Electron Microscopy (TEM), UV-visible spectrophotometry (UV), photoluminescence spectroscopy (PL) and Fourier transform Infra-red spectroscopy (FTIR). The results showed that the nanorods have wurtzite phase crystal structure and exhibits near band edge luminescence in the ultra violet region. The diameter of the synthesized PVP capped ZnS nanorods is about 600 nm. The possible growth mechanism of the ZnS nanorods could be attributed to the oriented attachment effect.  相似文献   

4.
The degradation behavior of ZnS:Ag, Cl as a phosphor for CL by EB irradiation at 7 kV was examined by TL measurement. After EB irradiation, TL intensity decreased and the TL peak shifted to the lower temperature side. By comparing TL thermograms of mechanically damaged ZnS:Ag, Cl, ZnS:Cl with varying Cl concentration as well as ZnS:Ag, Al after EB irradiation, we conclude that the decrease in the effective concentration of Cl, serving as active luminescence center, is responsible for the CL degradation of ZnS:Ag, Cl by EB irradiation.  相似文献   

5.
Ultrafine terbium-doped yttrium aluminum garnet (YAG:Tb) phosphor powders are prepared by a nitrate-citrate sol-gel combustion process using 1:1 ratio of citrate/nitrate. Phase evolution of the synthesized powder is determined by X-ray diffraction (XRD) techniques. Single-phase cubic YAG:Tb crystalline powder is obtained by calcinating the amorphous materials at 900 °C and no intermediate phase is observed. Transmission electronic microscope (TEM) morphology shows that the resultant YAG:Tb powders have uniform size and good homogeneity. The particle size of the product is investigated as a function of the calcination temperature. The photoluminescence (PL) spectrum of Tb3+ substituted for Y3+ in YAG with 5.0% content has been measured on samples calcined at different temperatures.  相似文献   

6.
Tb3+-doped SrWO4 phosphors with a scheelite structure have been prepared by hydrothermal reaction. X-ray powder diffraction, field-emission scanning electron microscopy, photoluminescence excitation and emission spectra and decay curve were used to characterize the resulting samples. Scanning electron microscopy image showed that the obtained SrWO4:Tb3+ phosphors appeared to be nearly spherical and their sizes ranged from 1 to 3 μm. Photoluminescence spectra indicated the phosphors emitted strong green light centered at 545 nm under ultraviolet light excitation. Because 12 at.% SWO4:Tb3+ phosphor exhibits intensive green emission under 254 nm excitation in comparison with the commercial green fluorescent lamp phosphor (LaPO4:Ce,Tb), the excellent luminescence properties make it a new promising green phosphor for fluorescent lamps application.  相似文献   

7.
LiSrBO3:M (M = Eu3+, Sm3+, Tb3+, Ce3+, Dy3+) phosphors which have been developed for white light-emitting diodes (LEDs) were synthesized by a normal solid-state reaction. The emission and excitation spectra indicate that these phosphors can be effectively excited by near-ultraviolet light-emitting diodes (UVLED), and exhibit satisfactory red, green and blue performances, respectively, nicely fitting in with the widely applied UV chip. Under the condition of doping charge compensation Li+, Na+ and K+, the luminescence intensities of these phosphors were increased.  相似文献   

8.
《Materials Research Bulletin》2013,48(11):4743-4748
We investigate the persistent luminescence in europium-doped strontium pyrophosphate upon codoping with auxiliary rare earth ions. The persistent phosphors are synthesized via solid-state reaction method under flowing N2 + H2. Under UV irradiation, broadband emission persistent luminescence located at 420 nm is observed in all of these phosphors at room temperature. The effects of auxiliary rare earth ions on Sr2P2O7:Eu2+ are discussed according to the decay curves and thermoluminescence spectra. Sr2P2O7:Eu2+,Lu3+ shows the best performance, while and La3+ and Ce3+ codoped samples are the weakest. The influence of auxiliary codopants is discussed in terms of ionic potential and ionic radius. We derive an empirical formula based on the experimental results.  相似文献   

9.
Red phosphor of CaIn2O4:Eu3+, Sm3+ is synthesized by solid state reaction. The 5D0 → 7F2 transition of Eu3+ is dominantly observed in the photoluminescence spectrum, leading to a red emission of the phosphor. The doped Sm3+ is found to be efficient to sensitize the emission of Eu3+ and be effective to extend and strengthen the absorption of near-UV light with wavelength of 400-405 nm, and the energy transfer from Sm3+ to Eu3+ occurs and is discussed. The effect of the molar concentration of Sm3+ on the emission intensities of the phosphor CaIn2O4:Eu3+, Sm3+ is investigated. The temperature quenching effect is also measured from room temperature to 425 K, and the emission intensity of the phosphor at 425 K shows about 85% of that at room temperature. Furthermore, the chromaticity coordinates, the emission intensities and the conversion efficiencies of CaIn2O4:Eu3+, Sm3+ are compared to those of the conventional red phosphor of Y2O2S:Eu3+.  相似文献   

10.
Red-emitting (YGd)2O3:Eu phosphor particles, with high luminescence efficiency under vacuum ultraviolet (VUV) and ultraviolet (UV) excitation, were prepared by a large-scale spray pyrolysis process. To control the morphology of phosphor particles under severe preparation conditions, spray solution with polymeric precursors were introduced in spray pyrolysis. The prepared (YGd)2O3:Eu phosphor particles had spherical shape and filled morphology even after post-treatment irrespective of Gd/Y ratio. In the case of solution with polymeric precursors, long polymeric chains formed by esterification reaction in a hot tubular reactor; the droplets turned into viscous gel, which retarded the precipitation of nitrate salts and promoted the volume precipitation of droplets. The brightness of (YGd)2O3:Eu phosphor particles increased with increasing gadolinium content, and the Gd2O3:Eu phosphor had the highest luminescence intensity under UV and VUV excitation. The maximum peak intensity of Gd2O3:Eu phosphor particles under UV and VUV were 118 and 110% of the commercial Y2O3:Eu phosphor particles, respectively.  相似文献   

11.
A series of new red-emitting Ce3+, Mn2+-doped barium lithium silicate phosphors, with general formula Ba2Li2Si2O7: Ce3+, Mn2+, were synthesized by solid-state reactions. The Mn2+ in this system can be effectively excited in a wide UV region especially in the NUV range, and has broad red emission after NUV excitation through Ce3+-Mn2+ energy transfer, as well as excellent thermal stability. The blue-shift behavior of Mn2+ emission with increasing temperature can be described in terms of the phonon-electron interaction. The promising luminescence properties make it a red candidate for application in NUV chip pumped LED.  相似文献   

12.
Starting from nitrate aqueous solutions with citric acid and polyethylene glycol (PEG) as additives, Y3Al5O12:Eu (YAG:Eu) phosphors were prepared by a two-step spray pyrolysis (SP) method. The obtained YAG:Eu phosphor particles have spherical shape, submicron size and smooth surface. The effects of process conditions of the spray pyrolysis on the crystallinity, morphology and luminescence properties of phosphor particles were investigated. The emission intensity of the phosphors increased with increasing of sintering temperature and solution concentration due to the increase of the crystallinity and particles size, respectively. Adequate amount of PEG was necessary for obtaining spherical particles, and the optimum emission intensity could be obtained when the concentration of PEG was 0.10 g/ml in the precursor solution. Compared with the YAG:Eu phosphor prepared by citrate-gel (CG) method with non-spherical morphology, spherical YAG:Eu phosphor particles showed a higher emission intensity.  相似文献   

13.
Nano-crystalline GdBO3:Eu3+ was prepared by a hydrothermal method and the effects of some processing variables such as pH, temperature were investigated. The as-synthesized powders were spherical shaped agglomerates of nanoparticles. The luminescent properties were compared with samples synthesized by conventional solid-state reaction method. Both the photoluminescence intensity and chromaticity were improved and a red-shift in the CT band was observed for the hydrothermally synthesized samples. Possible mechanisms of phase formation were investigated and explanations for the changes in optical properties are proposed.  相似文献   

14.
Cu2O/Cu nanocomposites (NCs) with flowerlike nano-architecture were prepared using template-free stepwise solvent-thermal synthesis route with Cu(NO3)2·3H2O as a precursor. With the precursor concentration increasing gradually from 0.01 to 0.1 M, the morphology of the NCs evolves from nano-flower to microsphere. The content of Cu in the NCs can be easily controlled by adjusting the concentration of precursor and synthesis time. Using photocatalytic degradation of monoazo dye Procion Red MX-5B (PR) and phenol as the probe molecules under visible-light illumination, we have investigated the influence of Cu on the photocatalytic activity of Cu2O. When the content of Cu lies in the range of 27–71 wt%, the samples exhibit higher photocatalytic performance, indicating that these flowerlike Cu2O/Cu NCs are promising candidates for pollutant processing.  相似文献   

15.
Zn2SiO4:Mn powders were prepared by solid-state reaction using extracted SBA-15 as silica source. The well crystalline willemite Zn2SiO4:Mn can be obtained at 800 °C, much lower than the conventional solid-state reaction temperature and lower than using the calcined SBA-15. This can be attributed to the high reactive activity of the extracted SBA-15 due to its high density silanol groups, large surface areas, and non-crystalline structure. Ultraviolet (UV) and vacuum ultraviolet (VUV) excitation spectra reveal the host lattice absorption band around 162 nm and the charge transfer transition band around 245 nm. The Zn2SiO4:Mn phosphor exhibits a strong green emission around 527 nm. The Zn2SiO4:Mn phosphor with an Mn doping concentration of 0.06, i.e., Zn1.94Mn0.06SiO4, shows the highest relative emission intensity. Upon 147 nm excitation, the luminescence decay time of the green emission of Zn1.94Mn0.06SiO4 around 527 nm is 8.87 ms.  相似文献   

16.
Phosphors of La2TeO6 doped with Eu3+ ions have been synthesized by the oxidation of the corresponding rare-earths oxytellurides of formula La2−xEuxO2Te (x = 0.02, 0.06, and 0.1) at 1050 K. Powder X-ray diffraction confirms that the as prepared materials consist of the orthorhombic La2TeO6 as main phase. The photoluminescence (PL) of red-emitting La2−xEuxTeO6 powder phosphors is reported. The emission spectrum, exhibits an intense emission peak due to 5D0 → 7F2 transition at 616 nm, which indicates that the Eu3+ ion occupies a non-centrosymmetric site in the host lattice. These materials could find application for use as lamp phosphors in the red region.  相似文献   

17.
Water-soluble fluorescent carbon nanoparticles were synthesized directly from active carbon by a one-step hydrogen peroxide-assisted ultrasonic treatment. The carbon nanoparticles were characterized by transmission electron microscopy, optical fluorescent microscopy, fluorescent spectroscopy, Fourier transform infrared spectroscopy and ultraviolet-visible spectrophotometer. The results showed that the surface of carbon nanoparticles was rich of hydroxyl groups resulting in high hydrophilicity. The carbon nanoparticles could emit bright and colorful photoluminescence covering the entire visible-to-near infrared spectral range. Furthermore, these carbon nanoparticles also had excellent up-conversion fluorescent properties.  相似文献   

18.
ZnS:Cu, Br powder EL phosphors showed 6-line EPR signal at 25°C whose intensity increases with Cu content and on annealing in Zn-vapour. The signal arises from native Mn impurity. The starting material does not show any EPR signal since Mn2+ acts as an affinity potential well for a hole in ZnS, forming Mn3+ - a chemically uncommon situation in sulfides. In doped ZnS, holes are trapped at Cu such that Mn2+ persists. Deterioration of EL brightness is accompanied by the decrease in EPR signal intensity due to field assisted hole transference to Mn2+. Intentional addition of Mn in ZnS:Cu, Br decreases the brightness and shortens life time. Stable phosphors require ZnS with Mn content less than 1014 cm?3.  相似文献   

19.
In this article, the molecular structure, photoluminescent and electroluminescent properties of bis(2-(4-methyl-2-hydroxyphenyl) benzothiazolate) zinc (Zn(4-MeBTZ)2) with good electron-transport characteristics were reported. This complex was identified as triclinic structure with the strong intermolecular π–π stacking interactions between the benzothiazolate/phenoxido rings and weak intramolecular hydrogen bonds by X-ray single-crystal diffraction. Quantum chemical method has been employed to investigate electron structure and charge transport property. The blue-green light emission was observed by fabricating double-layer devices using Zn(4-MeBTZ)2 as electron-transport and NPB as hole-transport material. The performance of organic light-emitting devices based on Zn(4-MeBTZ)2 is much better than that of the devices based on [Zn(BTZ)2]2.  相似文献   

20.
A white-emitting Ca9Y(PO4)7: Tm3+, Dy3+ phosphor has been successfully prepared by conventional high-temperature solid-state reaction. X-ray diffraction (XRD) and fluorescence spectrophotometer were used to characterize the as-synthesized phosphors. The excitation and emission spectra show that all the Tm3+ and Dy3+ co-doped Ca9Y(PO4)7 samples can be effectively excited by UV light and then emit blue and yellow light simultaneously. Furthermore, the emission and color coordinate of as-obtained samples pumped by 365 nm are able to be adjusted around white light by varying the doping concentrations of Tm3+ and Dy3+. So, the as-fabricated single-composition Ca9Y(PO4)7: Tm3+, Dy3+ phosphor will have a promising application in the area of white light emitting diodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号