首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
地下水位中地震前兆信息提取方法研究   总被引:1,自引:0,他引:1       下载免费PDF全文
地下水位观测值的影响因素包含降雨、气压、固体潮、地质构造作用等.为凸显地质构造作用对地下水位的影响,需要滤除降雨、固体潮、气压等因素的影响量.本文首先分离地下水位受固体潮、气压作用的影响量;然后依据降雨影响地下水位可以分为长期和短期变化的思路,利用基流分割方法对地下水位的两种变化进行分离,确定地下水位的降雨影响量;最后分析各分量异常与地震活动性关系,探查其中包含的地震前兆信息.本文的研究思路为地下水位观测值中地震前兆信息研究提供了一套可供尝试的系统技术方法.  相似文献   

2.
通过对气象因素和地质结构特征的分析,并依据水溶气观测资料,提出与干旱相关的气象因素引起的地下水位变化,是西泉杜家村井水产生冒泡现象的原因  相似文献   

3.
Trends in the timing and magnitude of floods in Canada   总被引:2,自引:0,他引:2  
This study investigates trends in the timing and magnitude of seasonal maximum flood events across Canada. A new methodology for analyzing trends in the timing of flood events is developed that takes into account the directional character and multi-modality of flood occurrences. The methodology transforms the directional series of flood occurrences into new series by defining a new location of the origin. A test of flood seasonality (multi-modality) is then applied to identify dominant flood seasons. Floods from the dominant seasons are analyzed separately by a seasonal trend analysis. The Mann–Kendall test in conjunction with the method of pre-whitening is used in the trend analysis. Over 160 streamflow records from one common observation period are analyzed in watersheds with relatively pristine and stable land-use conditions. The results show weak signals of climate variability and/or change present in the timing of floods in Canada during the last three decades. Most of the significant trends in the timing of spring snowmelt floods are negative trends (earlier flood occurrence) found in the southern part of Canada. There are no significant trends identified in the timing of fall rainfall floods. However, the significance of the fall, rainfall-dominated flood season has been increasing in several analyzed watersheds. This may indicate increasing intensity of rainfall events during the recent years. Trends in the magnitude of floods are more pronounced than the trends in the timing of floods. Almost one fifth of all the analyzed stations show significant trends in the magnitude of snowmelt floods. Most of the significant trends are negative trends, suggesting decreasing magnitudes of snowmelt floods in Canada over the last three decades. Significant negative trends are found particularly in southern Ontario, northern Saskatchewan, Alberta and British Columbia. There are no significant trends in the magnitude of rainfall floods found in the analyzed streamflow records. The results support the outcomes of previous streamflow trend studies conducted in Canada.  相似文献   

4.
  总被引:4,自引:0,他引:4  
Groundwater temperatures, especially in shallow (quaternary) aquifers respond to ground surface temperatures which in turn depend on climate and land use. Groundwater temperatures, therefore, are modified by climate change and urban development. In northern temperate climate regions seasonal temperature cycles penetrate the ground to depths on the order of 10–15 m. In this paper, we develop and apply analytic heat transfer relationships for 1-D unsteady effective diffusion of heat through an unsaturated zone into a flowing aquifer a short distance below the ground surface. We estimate how changes in land use (urban development) and climate change may affect shallow groundwater temperatures. We consider both long-term trends and seasonal cycles in surface temperature changes. Our analysis indicates that a fully urbanized downtown area at the latitude of Minneapolis/St. Paul is likely to have a groundwater temperature that is nearly 3 °C warmer than an undeveloped agricultural area at the same geographic location. Pavements are the main cause of this change. Data collected by the Minnesota Pollution Control Agency (MPCA) in the St. Cloud, MN area confirm that land use influences groundwater temperatures. Ground surface temperatures are also projected to rise in response to global warming. In the extreme case of a doubling of atmospheric carbon dioxide (2 × CO2 climate scenario), groundwater temperatures in the Minneapolis/St. Paul metropolitan area could therefore rise by up to 4 °C. Compounding a land use change from “undeveloped” to “fully urbanized” and a 2 × CO2 climate scenario, groundwater temperatures are projected to rise by about 5 °C at the latitude of Minneapolis/St. Paul.  相似文献   

5.
6.
水位波动信息在含水层中传播特性的实验研究   总被引:1,自引:0,他引:1  
车用太  唐毅 《地震研究》1995,18(4):365-370
本文通过一系列水动力学模型实验,探讨了水位波动信息在含水层中传播的特性。实验结果表明,水位波动信息在含水层中传播时发生幅度衰减、时间滞后乃至形态变异等复杂现象,其特征同含水介质的类型、波动信息的频率与传播距离等有关。这样的结果,对地下水位映震条件、映震特征与映震机制的深入研究,提供了有益的启示。  相似文献   

7.
High quality temperature measurements have been made to depths of 30 to 220 m at 42 sites in 62 observational hydrogeological wells in Alberta. The temperature profiles commonly show near-surface inversions with a minimum temperature at depths of 30 to 50 m. Thermal modelling suggests a surface temperature history with warming reaching 2°C over the past 30 to 60 years. Recent climate warming evident from the analysis of the air temperature data in the region seems to provide at least a partial explanation of the increased ground temperatures. A sudden increase of the surface ground temperature caused by land clearing may be the other explanation, although modelling of such a sudden increase can only explain the observed temperature-depth data if the onset of such warming is 20–30 years old, which is in disagreement with the history of land development in the studied area. The effect of near-surface inversions of the temperature profiles also has been observed in the forested areas. The above support the climate based effect. The superposition of the climatic effect and man-made activity effect upon the ground warming is a very complicated process calling for considerably more research.  相似文献   

8.
    
In this paper, we first discuss the controversial result of the work by Cabanes et al. (Science 294:840–842, 2001), who suggested that the rate of past century sea level rise may have been overestimated, considering the limited and heterogeneous location of historical tide gauges and the high regional variability of thermal expansion which was supposed to dominate the observed sea level. If correct, this conclusion would have solved the problem raised by the IPCC third assessment report [Church et al, Cambridge University Press, Cambridge, pp 881, 2001], namely, the factor two difference between the 20th century observed sea level rise and the computed climatic contributions. However, recent investigations based on new ocean temperature data sets indicate that thermal expansion only explains part (about 0.4 mm/year) of the 1.8 mm/year observed sea level rise of the past few decades. In fact, the Cabanes et al.’s conclusion was incorrect due to a contamination of abnormally high ocean temperature data in the Gulf Stream area that led to an overestimate of thermal expansion in this region. In this paper, we also estimate thermal expansion over the last decade (1993–2003), using a new ocean temperature and salinity database. We compare our result with three other estimates, two being based on global gridded data sets, and one based on an approach similar to that developed here. It is found that the mean rate of thermosteric sea level rise over the past decade is 1.5±0.3 mm/year, i.e. 50% of the observed 3 mm/year by satellite altimetry. For both time spans, past few decades and last decade, a contribution of 1.4 mm/year is not explained by thermal expansion, thus needs to be of water mass origin. Direct estimates of land ice melt for the recent years account for about 1 mm/year sea level rise. Thus, at least for the last decade, we have moved closer to explaining the observed rate of sea level rise than the IPCC third assessment report.  相似文献   

9.
Sea level change is an important consequence of climate change due to its impact on society and ecosystems. Analyses of tide-gauge data have indicated that the global sea level has risen during the 20th century and several studies predict that the mean sea level will continue to rise during the 21st century, intensifying coastal hazards worldwide. In Portugal, the Ria de Aveiro is expected to be one of the regions most affected by sea level change.The main aim of this study is to evaluate the potential impacts of the mean sea level change on the hydrodynamics and morphodynamics of the Ria de Aveiro. With this purpose, local mean sea level change was projected for the period 2091-2100 relative to 1980-1999, for different Special Report on Emission Scenarios (SRES) scenarios developed by the Intergovernmental Panel on Climate Change (IPCC). These projections revealed an increase in the mean sea level between 0.28 m under scenario B1 and 0.42 m under scenario A2.The results obtained for sea level rise scenario A2 projection were used to force the morphodynamic model MORSYS2D, previously implemented for the Ria de Aveiro. The modelling results were compared with model forecasts for the present sea level. The residual sediment transport and its balance at the lagoon inlet were computed and analysed for both situations. While the residual sediment transport is generally seaward, sediments tend to deposit inside the inlet due to the weak sediment transport at its mouth. The direction of the residual flux will not change with the sea level rise, but sediment fluxes will intensify, and accretion inside the inlet will increase.The rise in mean sea level will also affect the lagoon hydrodynamics. The tidal prism at the lagoon mouth will increase by about 28% in spring tide. In the lower lagoon only a slight increase of the tidal asymmetry is predicted.  相似文献   

10.
The results of precision temperature logs made to depths of several hundred meters in some 80 wells in Western Canada, most of which are located in the Prairie Provinces, show evidence of warming at the ground surface in the 0.5 K to 3.5 K range (average=2.2±0.7 K, for 80 unevenly distributed sites). Modeling shows that this warming mostly pertains to this century and it has been most substantal in the last four decades if the ramp function of the linear increase of surface temperature is assumed. Using the step function model's increase of surface temperature (land clearing, forest fires, etc.) the calculated onset of warming would pertain mostly to the last two decades. Contour maps of ground temperatures currently and previously and a contour map of the ground warming magnitude dilineate a large regional character of the ground temperature change at the southern marigin of permafrost for the large area of the Prairie Provinces. In many cases however, the magnitude of ground warming is much larger than the magnitude of air warming. This is especially evident for the northern areas of Alberta in the boreal forest ecoprovince. The magnitude of ground warming is equal to the magnitude of surface air warming in southern Alberta in the grassland and aspen parkland ecoprovinces. The analysis of the temperature depth response to the surface warming from well data shows the integrated effect of surface air warming together with the increases in ground temperature due to natural terrain effects and other anthropogenical changes to the surface of the earth.  相似文献   

11.
    
The completeness and the accuracy of the Brest sea level time series dating from 1807 make it suitable for long-term sea level trend studies. New data sets were recently discovered in the form of handwritten tabulations, including several decades of the eighteenth century. Sea level observations have been made in Brest since 1679. This paper presents the historical data sets which have been assembled so far. These data sets span approximately 300 years and together constitute the longest, near-continuous set of sea level information in France. However, an important question arises: Can we relate the past and the present-day records? We partially provide an answer to this question by analysing the documents of several historical libraries with the tidal data using a ‘data archaeology’ approach advocated by Woodworth (Geophys Res Lett 26:1589–1592, 1999b). A second question arises concerning the accuracy of such records. Careful editing was undertaken by examining the residuals between tidal predictions and observations. It proved useful to remove the worst effects of timing errors, in particular the sundial correction to be applied prior to August 1, 1714. A refined correction based on sundial literature [Savoie, La gnomique, Editions Les Belles Lettres, Paris, 2001] is proposed, which eliminates the systematic offsets seen in the discrepancies in timing of the sea level measurements. The tidal analysis has also shown that shallow-water tidal harmonics at Brest causes a systematic difference of 0.023 m between mean sea level (MSL) and mean tide level (MTL). Thus, MTL should not be mixed with the time series of MSL because of this systematic offset. The study of the trends in MTL and MSL however indicates that MTL can be used as a proxy for MSL. Three linear trend periods are distinguished in the Brest MTL time series over the period 1807–2004. Our results support the recent findings of Holgate and Woodworth (Geophys Res Lett) of an enhanced coastal sea level rise during the last decade compared to the global estimations of about 1.8 mm/year over longer periods (Douglas, J Geophys Res 96:6981–6992, 1991). The onset of the relatively large global sea level trends observed in the twentieth century is an important question in the science of climate change. Our findings point out to an ‘inflexion point’ at around 1890, which is remarkably close to that in 1880 found in the Liverpool record by Woodworth (Geophys Res Lett 26:1589–1592, 1999b).  相似文献   

12.
李想  张雪芹  徐晓明 《湖泊科学》2022,34(1):219-231
气候变化对湖泊水位的影响是湖泊研究的关注热点.作为欧亚大陆最大淡水湖,贝加尔湖水位变化深受自然因素和人类活动的共同影响.在全球变暖背景下,贝加尔湖水位升降将对维系流域生态系统与社会发展至关重要.为此,基于湖区气象站、水文站和湖泊水位观测数据,采用突变检验、变异系数检验等方法,分析了过去40年贝加尔湖周边气候变化及其对水...  相似文献   

13.
This paper analyzes the effects of geology and geomorphology on surface-water/-groundwater interactions, evapotranspiration, and recharge under conditions of long-term climatic change. Our analysis uses hydrologic data from the glaciated Crow Wing watershed in central Minnesota, USA, combined with a hydrologic model of transient coupled unsaturated/saturated flow (HYDRAT2D). Analysis of historical water-table (1970–1993) and lake-level (1924–2002) records indicates that larger amplitude and longer period fluctuations occur within the upland portions of watersheds due to the response of the aquifer system to relatively short-term climatic fluctuations. Under drought conditions, lake and water-table levels fell by as much as 2–4 m in the uplands but by 1 m in the lowlands. The same pattern can be seen on millennial time scales. Analysis of Holocene lake-core records indicates that Moody Lake, located near the outlet of the Crow Wing watershed, fell by as much as 4 m between about 4400 and 7000 yr BP. During the same time, water levels in Lake Mina, located near the upland watershed divide, fell by about 15 m. Reconstructed Holocene climate as represented by HYDRAT2D gives somewhat larger drops (6 and 24 m for Moody Lake and Lake Mina, respectively). The discrepancy is probably due to the effect of three-dimensional flow. A sensitivity analysis was also carried out to study how aquifer hydraulic conductivity and land-surface topography can influence water-table fluctuations, wetlands formation, and evapotranspiration. The models were run by recycling a wet year (1985, 87 cm annual precipitation) over a 10-year period followed by 20 years of drier and warmer climate (1976, 38 cm precipitation). Model results indicated that groundwater-supported evapotranspiration accounted for as much as 12% (10 cm) of evapotranspiration. The aquifers of highest hydraulic conductivity had the least amount of groundwater-supported evapotranspiration owing to a deep water table. Recharge was even more sensitive to aquifer hydraulic conductivity, especially in the lowland regions. These findings have important implications for paleoclimatic studies, because the hydrologic response of a surface-water body will vary across the watershed to a given climate signal.  相似文献   

14.
This paper studies the relationship between water level step-variation anomalies and regional seismic activity.The train of thinking is as follows:First,a series of water level step-variation anomalies are regarded as sequential step-variation anomalies; next,these sequential anomalies are divided into several sub-sequential anomalies according to the temporal density of step-variations in different segments of the sequence; then the generation and evolution processes of various sub-sequential anomalies are analyzed to find their relation with regional moderate-strong earthquake activities,and finally the various sub-sequential anomalies are synthesized as sequential anomalies so as to analyze their relation with the tendency of seismic activities.By the above method,this paper has analyzed the relationship between a series of water level step-variation anomalies at the Wanquan well since 1981 and several regional moderate-strong earthquake activities.According to the monthly frequency,amplitude and tre  相似文献   

15.
  总被引:1,自引:3,他引:1  
Multi-scale entropy (MSE) analysis was applied to the long-term (131 years) daily flow rates (Q) of the Mississippi River (MR) to investigate possible change in the complexity of the MR system due to human activities since 1940s. Unlike traditional entropy-based method that calculates entropy at only one single scale, the MSE analysis provided entropies over multiple time scales and thus accounts for multi-scale structures embedded in time series. It is found that the sample entropy (S E) for Q of the MR and its two components, overland flow (OF) and base flow (BF), generally increase as time scale increases. More importantly, it is found that there have been entropy decreases in Q, OF, and BF over large time scales. In other words, the MR may have been losing its complexity since 1940s. We explain that the possible loss in the complexity of the MR system may be due to the major changes in land use and land cover and soil conservation practices in the MR basin since 1940s.  相似文献   

16.
北京平原区基岩井水位的年动态特征及其成因分析   总被引:2,自引:0,他引:2       下载免费PDF全文
车用太  简春林 《地震地质》1994,16(3):255-263
系统阐述了北京平原区10口地震地下水位动态观测井及其水位年动态特征,主要分析了降雨与开采对年动态特征的影响,讨论了大同-阳高地震前后某些井水位长期异常的信度  相似文献   

17.
对1998年6月和2002年6月蛟河井出现的两次水位异常进行了分析。排除了其它可能出现的干扰因素。基本上认为是深震前的地下水异常。  相似文献   

18.
To improve our understanding of the impacts of feedback between the atmosphere and the terrestrial water cycle including groundwater and to improve the integration of water resource management modelling for climate adaption we have developed a dynamically coupled climate–hydrological modelling system. The OpenMI modelling interface is used to couple a comprehensive hydrological modelling system, MIKE SHE running on personal computers, and a regional climate modelling system, HIRHAM running on a high performance computing platform. The coupled model enables two-way interaction between the atmosphere and the groundwater via the land surface and can represent the lateral movement of water in both the surface and subsurface and their interactions, not normally accounted for in climate models. Meso-scale processes are important for climate in general and rainfall in particular. Hydrological impacts are assessed at the catchment scale, the most important scale for water management. Feedback between groundwater, the land surface and the atmosphere occurs across a range of scales. Recognising this, the coupling was developed to allow dynamic exchange of water and energy at the catchment scale embedded within a larger meso-scale modelling domain. We present the coupling methodology used and describe the challenges in representing the exchanges between models and across scales. The coupled model is applied to one-way and two-way coupled simulations for a managed groundwater-dominated catchment, the Skjern River, Denmark. These coupled model simulations are evaluated against field observations and then compared with uncoupled climate and hydrological model simulations. Exploratory simulations show significant differences, particularly in the summer for precipitation and evapotranspiration the coupled model including groundwater and the RCM where groundwater is neglected. However, the resulting differences in the net precipitation and the catchment runoff in this groundwater dominated catchment were small. The need for further decadal scale simulations to understand the differences and insensitivity is highlighted.  相似文献   

19.
地下水位短临异常演化特征及其与地震关系的研究   总被引:3,自引:1,他引:3  
本文对1976年唐山地震以来华北地区Ms≥5.0地震前的地下水位异常资料进行了系统整理,分析研究了水位短临前兆异常的时空演化特征及其与地震的关系。结果表明:震前水位短临异常的空间分布主要集中在一定范围并沿活动断裂带展布,且不均匀;大部分地震的水位短期异常较临震异常多;震前水位短期异常向临震异常过度时,分布区向震源区收缩,但在震中距100km左右以内这种现象不明显;震级与短临异常展布范围、短期异常幅度有一定关系,而与临震时期异常大小的关系不明显;地震发震时间与异常的超前、持续以及等待时间有关;地震发生地点与异常分布特征有关,震中往往不在短临异常集中区的几何中心,而是在异常范围内的某一侧或异常迁移方向附近。  相似文献   

20.
通过对新疆库尔勒台钻孔应变出现的阶变异常进行统计,将它和周边300 km范围内MS≥5.0地震对应,分析映震效果,又将阶变异常和辅助观测水位对比分析.分析结果表明,阶变异常一定程度上和水位关系密切,地震的前兆意义不明显.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号