首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents a new robust and effective control strategy to mitigate symmetrical voltage dips in a grid‐connected doubly fed induction generator (DFIG) wind energy conversion system without any additional hardware in the system. The aim is to control the power transmitted to the grid so as to keep the electrical and mechanical quantities above their threshold protection values during a voltage dip transient. To achieve this, the references of the powers are readjusted to adapt the wind energy conversion system to the fault conditions. Robust control strategies, combining the merits of sliding mode theory and fuzzy logic, are then proposed in this paper. These controllers are derived from the dynamic model of the DFIG considering the variations in the stator flux generated by the voltage drop. This approach is found to yield better performance than other control design methods which assume the flux in the stator to remain constant in amplitude. This control scheme is compliant with the fault‐ride‐through grid codes which require the wind turbine generator to remain connected during voltage dips. A series of simulation scenarios are carried out on a 3‐MW wind turbine system to demonstrate the effectiveness of the proposed control schemes under voltage dips and parameter uncertainty conditions.  相似文献   

2.
Libao Shi  Zheng Xu  Jin Hao  Yixin Ni 《风能》2007,10(4):303-320
This paper shows a model of a doubly fed induction generator (DFIG) including a simplified model of a wind turbine for the purpose of transient stability analysis of large‐scale power systems with great wind farms penetration. The wind turbine model and the DFIG model are systematically deducted in this paper. Specially, the improved model of rotor‐side converter and the simplified grid‐side converter model are considered in our work. The corresponding machine–network interface solution based on the synchronously rotating common x‐y reference frame is elaborately issued in this paper. Furthermore, a method is proposed to calculate the DFIG initial conditions as well. A simplified model of the turbine is used excluding among other components the pitch control. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
Kai Liao  Yao Wang  Zhengyou He 《风能》2018,21(3):151-162
This paper proposes a novel control strategy for doubly fed induction generator (DFIG)‐based wind energy conversion system to investigate the potential of enhancing the stability of wind energy transmission system, a synchronous generator weakly integrated to a power system with a DFIG‐based wind farm. The proposed approach uses state feedback to exactly linearize the nonlinear wind energy transmission system from control actions (active power and reactive power control order of DFIG) to selected outputs (power angle and voltage behind transient resistance of synchronous generator) at first. Then, on account of the linearized subsystem, the stability enhancement controller is designed based on linear quadratic regulator algorithm to contribute adequate damping characteristics to oscillations of the synchronous generator system under various operation points. The proposed control strategy successfully deals with the nonlinear behaviors exist from the inputs to outputs and improve the robustness with respect to the variation of system operation points. Furthermore, not only the rotor angle stability but also the voltage stability is enhanced by using the proposed control strategy. The simulation results carried on the studied system verify the effectiveness of the proposed control strategy of wind energy conversion system for system stability enhancement and the robustness against various system operation points.  相似文献   

4.
风电场的稳定问题   总被引:15,自引:1,他引:14  
介绍了大型风电场的并网技术;指出了依据风电场的容量大小,其接入电网的电压等级也有所不同;在对风电系统的稳定性进行定位的基础上,通过对国内外包含风电场的电力系统的研究成果的对比分析,展现了不同类型的风电机组在电力系统暂态过程中的行为特性,为从事风电研究的科技工作者提供参考.  相似文献   

5.
The objective of this paper is to propose a simple approach to solve the steady state of a wind turbine (WT) equipped with a doubly fed induction generator (DFIG), which can be used to initialize dynamic studies of the machine. The idea is to model the rotor‐side converter (RSC) as a constant current source connected to the rotor of the DFIG. The resulting equivalent circuit consists of a voltage source in series with a reactance, which makes it possible to obtain simple phasor expressions that can be used to obtain the Park components of the variables. The proposed method is compared with the traditional Newton–Raphson algorithm, showing that it is easier and faster to implement, as it makes use of the phasor expressions and it does not require an iterative process to obtain the final solution. Finally, the results of the proposed method are used to simulate a 2‐MW DFIG‐based WT under three‐phase faults, considering three different WT‐operating points. In these simulations, the idea of constant rotor current is extrapolated to the entire event. The simulated results show that both current at torque peaks are reduced. The analytical study and the simulations have been carried out in Matlab ?.  相似文献   

6.
H.H. Song  Y.B. Qu 《风能》2013,16(5):645-659
A novel nonlinear energy‐based excitation controlling strategy for variable‐speed doubly‐fed induction wind generator (DFIWG) is proposed in this paper. From the consideration of physical nature and energy flow of the DFIWG, the mechanical subsystem and the electromagnetical subsystem of the DFIWG first have their port‐controlled Hamiltonian (PCH) realization. Then taking advantage of the feedback interconnection between the subsystems, the entire PCH model of the DFIWG is established. On the basis of this model, the excitation control for the generator speed adjustment is achieved by energy shaping design with the purpose of optimum wind energy capture. Finally, simulation results via MATLAB/Simulink (MathWorks, Natick, MA, USA) confirm the effectiveness of the proposed approach for wind speeds in different operating stages. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
Over the last few decades, doubly fed induction generators (DFIG) have become one of the most successful and preferred types of wind energy generators (WEG). The DFIG has the advantages of a wide range of speed operations, a high efficiency, and partial rated converters. However, direct coupling of the stator with the grid makes the system more prone to grid disturbances. The consequences of grid disturbances, such as a rotor overcurrent, stator overcurrent, electromagnetic torque oscillations, and direct current (DC) link overvoltage, are the predominant considerations that affect the rotor circuit, stator circuit, mechanical components, and DC‐link capacitor of the DFIG, respectively. These uncertainties affect the operation of the generator and may lead to the generator to be shutdown. In this paper, a novel position for the placement of a passive resistive element (PRE) is illustrated. This position of the PRE placement is compared with all other possible locations for the PRE. The different locations for PRE placement are the stator side, rotor side, across the DC‐link capacitor, and between the rotor side converter (RSC) and grid side converter (GSC). This paper aims to determine a cost‐effective solution among all possible locations of the PRE placement. The novel position of the PRE, ie, between the RSC and GSC, is the best position among the other possible locations of the PRE, when the performance, cost, and loss are taken into consideration. The effectiveness of the PRE is further compared with the resistive‐type superconducting fault current limiter (R‐SFCL). The PRE performs better and has a lower cost than the R‐SFCL.  相似文献   

8.
潮流计算是风电场接入系统设计的重要环节之一。准确的潮流计算结果对于建立风电场稳态模型是十分必要的。文章提出了不同控制方式下的双馈机组风电场节点在潮流计算中的处理方法以及潮流计算的具体步骤,给出了节点间的转化方法。运用PSASP进行仿真验证,证实了所提方法的可行性。  相似文献   

9.
M. El‐Shimy 《风能》2014,17(2):279-295
The analysis of reactive power for offshore and onshore wind farms connected to the grid through high‐voltage alternating‐current transmission systems is considered in this paper. The considered wind farm is made up with doubly fed induction generators (DFIGs). Modeling and improved analysis of the effective reactive power capability of DFIGs are provided. Particularly, the optimal power‐tracking constraints and other operational variables are considered in the modeling and analysis of the DFIG reactive power capability. Reactive power requirements for both overhead and cable transmission systems are modeled and compared with each other as well as with the reactive power capability of the wind farms. Possibility of unity power factor operation suggested by the German Electricity Association (VDEW) is investigated for both types of installations. Aggregate reactive power demands on both wind farms are assessed such that the bus voltages remain within an acceptable bandwidth considering various operational limits. The reactive power settings for both types of wind farm installations are determined. In addition, the minimum capacity and reactive power settings for reactive power compensation required for cable‐based installations are determined. Several numerical examples are given to illustrate the reactive power characteristics and capability of DFIGs, performance of transmission lines and reactive power analysis for DFIG‐based grid‐connected wind farms. A summary of the main outcomes of the work presented in this paper is provided in the conclusions section. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Modern wind power plants are required and designed to ride through faults in electrical networks, subject to fault clearing. Wind turbine fault current contribution is required from most countries with a high amount of wind power penetration. In order to comply with such grid code requirements, wind turbines usually have solutions that enable the turbines to control the generation of reactive power during faults. This paper addresses the importance of using an optimal injection of active current during faults in order to fulfil these grid codes. This is of relevant importance for severe faults, causing low voltages at the point of common coupling. As a consequence, a new wind turbine current controller for operation during faults is proposed. It is shown that to achieve the maximum transfer of reactive current at the point of common coupling, a strategy for optimal setting of the active current is needed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
Hybrid systems comprising battery energy storage systems (BESSs) and wind power generation entail considerable advances on the grid integration of renewable energy. Doubly fed induction generators (DFIGs) stand out among different wind turbine (WT) technologies. On the other hand, electrochemical batteries have proved to be valid for these purposes. In this paper, a comparative analysis is carried out between two alternative configurations for hybrid WT‐BESS systems, where the BESS is connected either outside or inside the DFIG. The modeling of these two configurations and the control systems applied for achieving the coordinate operation of the energy sources (DFIG and batteries) are illustrated. The hybrid systems under study are evaluated by simulation under normal operation (wind speed fluctuations and grid demand changes) and grid faults. Simulation results show that both configurations improve the grid integration capability of the WT, although the configuration with external BESS presents better results since it can provide additional active/reactive power injection. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
This paper proposes a comprehensive MPPT method by which extraction of maximum power from wind turbine and its subsequent transfer through various power stages and final delivery to the connected grid are realized. In the proposed system, the operation of the wind turbine at its maximum efficiency point is maintained by control of grid‐tied inverter such that the shaft speed of the generator is set to result the desired optimum tip speed ratio of the turbine. The proposed comprehensive MPPT estimates the required DC link voltage for each wind speed using a unified system model, uses a loss factor to account for the system losses, and then controls the inverter to push the WT extracted maximum power into the grid. The comprehensive MPPT is developed and is validated in MATLAB/Simulink platform in a wide range of operating wind speed. The results ascertain that the wind turbine is made to operate at its maximum efficiency point for all wind speeds below the rated one.  相似文献   

13.
This paper explores the feasibility of an intuitive solution torque density for the existing brushless doubly‐fed generator by dual‐stator and cage‐barrier rotor structure, so as to better adapt to the offshore wind power generation. The torque density of electrical machine is related to the key design parameters, such as the machine main dimensions, slot‐pole combinations, coupling between stator and rotor, and nonmagnetic ring thickness. According to working principles and design requirements of electrical machine, the dual‐stator brushless doubly‐fed wind power generator (DSBDFWPG) with cage‐barrier rotor is designed, and the key parameters relating to torque density are analyzed and discussed. Meanwhile, the main parameters of electrical machine are optimized by Taguchi method, such as air‐gap length and nonmagnetic ring thickness. On this basis, the performance parameters of DSBDFWPG are analyzed by finite element method, which is verified by experimental tests. Through analysis of the results, not only the design requirements are satisfied by the DSBDFWPG, but also the correctness and rationality of machine design method can also be verified. Finally, the torque density and other aspects of designed DSBDFWPG are compared with dual‐stator brushless doubly‐fed induction generator, doubly‐fed induction generator, asynchronous machine, and brushless doubly‐fed generator; it demonstrates the torque density improvement of the studied machine with its significance and value.  相似文献   

14.
This paper proposes a fractional‐order sliding mode control (FOSMC) based on feedback linearization (FL) technique to mitigate subsynchronous control interaction (SSCI) in doubly fed induction generator (DFIG)–based wind farms connected to series‐compensated transmission lines. A linearized form of the studied system is obtained with the use of FL, which leads to reduced system order and small computational burden. Then the FOSMC is designed for grid‐side converter (GSC) to stabilize SSCI and to provide a considerable robustness against external disturbances and parameter uncertainties. For FOSMC parameter tuning, genetic algorithm (GA) is performed through MATLAB/SIMULINK. Time‐domain simulation are carried out to evaluate the effectiveness of the FOSMC in mitigating SSCI at varied operating conditions, and the superior performance of the proposed control is demonstrated as compared with conventional vector control (VC), feedback linearization sliding mode control (FLSMC), high‐order sliding mode control (HOSMC).  相似文献   

15.
This paper presents a comparison of three variable‐speed wind turbine simulators used for a 2 MW wind turbine short‐term transient behaviour study during a symmetrical network disturbance. The simulator with doubly fed induction generator (DFIG) analytical model, the simulator with a finite element method (FEM) DFIG model and the wind turbine simulator with an analytical model of DFIG are compared. The comparison of the simulation results shows the influence of the different modelling approaches on the short‐term transient simulation accuracy. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
Modern wind turbines are predominantly variable speed wind turbines with power electronic interface. Emphasis in this paper is therefore on the modelling and control issues of these wind turbine concepts and especially on their impact on the power system. The models and control are developed and implemented in the power system simulation tool DIgSILENT. Important issues like the fault ride‐through and grid support capabilities of these wind turbine concepts are addressed. The paper reveals that advanced control of variable speed wind turbines can improve power system stability. Finally, it will be shown in the paper that wind parks consisting of variable speed wind turbines can help nearby connected fixed speed wind turbines to ride‐through grid faults. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
The stability of the electrical grid depends on enough generators being able to provide appropriate responses to sudden losses in generation capacity, increases in power demand or similar events. Within the United States, wind turbines largely do not provide such generation support, which has been acceptable because the penetration of wind energy into the grid has been relatively low. However, frequency support capabilities may need to be built into future generations of wind turbines to enable high penetration levels over approximately 20%. In this paper, we describe control strategies that can enable power reserve by leaving some wind energy uncaptured. Our focus is on the control strategies used by an operating turbine, where the turbine is asked to track a power reference signal supplied by the wind farm operator. We compare the strategies in terms of their control performance as well as their effects on the turbine itself, such as the possibility for increased loads on turbine components. It is assumed that the wind farm operator has access to the necessary grid information to generate the power reference provided to the turbine, and we do not simulate the electrical interaction between the turbine and the utility grid. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
The aim of this study is to provide a simplified model of a variable‐speed wind turbine (VSWT) with the technology of a doubly fed induction generator (DFIG), which operates under faulty grid conditions. A simplified model is proposed, which consists of a set of electrical and mechanical equations that can be easily modeled as simplistic electrical circuits. It makes it an excellent tool to achieve fault ride‐through capability of grid‐connected VSWT with DFIGs. Both symmetrical and unsymmetrical grid faults, which cause symmetrical and unsymmetrical voltage sags, have been applied to the system in order to validate the model. The proposed simplified model has been compared with the traditional full‐order model under multiple sags (different durations and depths), and the results reveal that both models present similar accuracy. As the idea is to reduce the computational time required to simulate the machine behavior under faulty grid conditions, the proposed model becomes suitable for that purpose. The analytical study has been validated by simulations carried out with MATLAB .  相似文献   

19.
This study focuses on the stability of power system based on codimension‐two bifurcation theory. In this paper, we investigate the impact of load modeling on permissible wind power generation margins in distribution networks. The study considers codimension‐two bifurcations of equilibria and limit cycles in wind power systems depending on varying two parameters simultaneously. The principle parameter is the wind power generation, and the other parameter depends on the different types of loads. The types of loads are ZIP, exponential recovery, dynamic induction loads, and composite load models. To study the effects of the induction motor loads, the proportion of the static component in the motor load is changed and assessed with respect to their mechanical loads. Wind generation margin boundaries are traced, and saddle‐node, Hopf, and limit‐induced bifurcation branches are obtained, delimiting the stable and unstable operating regions in the parameter space. The analysis presented in this paper can pave the way for determining methods for improving and monitoring these margins with consideration to the system parameters and load composition.  相似文献   

20.
利用PSASP软件的UPI接口程序模块.在PSASP中建立了双馈风电机组模型,以两个实际的地区电网为例,研究双馈风电机组接入地区电网后对电网电压的影响,结果表明:双馈风电机组提高了地区电网的静态电压水平:双馈风电机组在故障后能够减少系统所需的无功储备,从而有利于地区电网的电压稳定;风速的波动对地区电网的电压有影响,但一般不会影响其暂态稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号