首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rotational temperatures of the 1.58-μm (0–1) band of the Infrared Atmospheric system of molecular oxygen (IRAO2), measured in Zvenigorod (56° N, 36° E), are systematized and analyzed. An empirical dependence of variations in the temperature of the 1.58-μm emission on the solar zenith angle is derived. The use of parameters of the altitude distribution of emission intensity 1.27 μm of middle atmosphere temperature profiles, received from the AURA satellite, allowed for the study of daily variations in the temperature of the 1.58-μm emission. It is revealed that the behavior of these variations corresponds to daily variations in the atmospheric temperature at altitudes of the radiating layer of IRAO2, received from the AURA satellite.  相似文献   

2.
On the basis of the data of ground-based spectrometric observations in Zvenigorod (55.7°N, 36.8°E) and published results of measurements of the intensity of the Infrared Atmospheric system of molecular oxygen obtained at other stations, empirical relations describing variations in the intensity of the 1.58-μm emission for various solar and geophysical conditions are calculated.  相似文献   

3.
The optical observations on Heiss Island (Φ′ = 75.0°) have been used to study the characteristics of auroras in the near-noon MLT sector after abrupt increases in the solar wind dynamic pressure at negative and positive polarity of the IMF B z component. It has been found out that the 427.8 and 557.7 nm emission intensities considerably increased at B z < 0 both equatorward of the dayside red luminosity band and within this band. The value of the emission intensities at a red luminosity maximum (I 6300/I 5577 ∼ 0.5) indicates that energetic electron precipitation is of the magnetospheric origin. At B z > 0, fluxes of harder (E > 1 keV) precipitating electrons were superimposed on the soft spectrum of precipitating particles in the equatorial part of the red luminosity band. This red band part was hypothetically caused by the low-latitude boundary layer (LLBL) on closed lines of the geomagnetic field, the estimated thickness of which is ∼3 R e . The 557.7 nm emission intensity increased during 3–5 min after SC/SI and was accompanied by the displacement of the red band equatorward boundary toward lower latitudes. The displacement value was ∼150–200 km when the dynamic pressure abruptly increased by a factor of 3–5. After SC/SI, the 630.0 nm emission intensity continued increasing during 16–18 min. It is assumed that the time of an increase in the red line intensity corresponds to the time of saturation of the magnetospheric boundary layers with magnetosheath particles after an abrupt increase in their density.  相似文献   

4.
An interpretation of the type, size, and location of the source of the Aleutian earthquake on April 1, 1946, which was characterized by the highest intensity (I = 4), is proposed. The earthquake source is a subvertical reverse fault striking along the island arc and dipping at an angle of 85° toward the deep-sea trench. The reverse fault is located in the lower part of the island slope, within the eastern termination of the Aleutian terrace. The western end of the reverse fault is located in the area of the Krenitsyn Islands (λ ∼ 165°W), where the pattern of isobaths changes, and an abrupt widening of the shelf part of the Fox Islands takes place. Large (M S ∼ 7) shocks, preceding the 1946 earthquake, occurred here in 1940, 1942, and 1944. Structural inhomogeneities in the island slope in the area of the Sanak Islands (λ ∼ 162°W) determine the eastern edge of the source-reverse fault, whose length within the specified boundaries is about 200 km. The mean magnitude of the earthquake corresponding to such a source is ∼8.3. According to the regular relation between the rupture length and the mean movement, the vertical displacement of the ocean floor in the source region could attain 5–6 m. A significant vertical displacement of the ocean floor over its large length (∼200 km) was responsible for the high tsunamigenic ability of this earthquake. A favorable combination in the source area of the topographic and other conditions necessary for the tsunami formation could additionally contribute to an increase in the intensity of the tsunami. The earthquake of April 1, 1946, in the Fox Islands, as well as the tsunamigenic earthquakes of March 9, 1957, in the Andreanof Islands and February 4, 1965, in the Rat Islands, does not belong to the class of “slow” earthquakes.  相似文献   

5.
A new method of reconstruction of the temperature profile in the lunar mantle from the velocities of seismic P- and S-waves for different models of chemical composition is developed. The procedure of the solution of an inverse problem is realized with the help of the minimization of the Gibbs free energy and the equations of state of a mantle substance, taking into account phase transformations, anharmonicity, and the effects of inelasticity. The geophysical and geochemical constraints on composition and temperature distribution in Moon’s mantle are established. The upper mantle can be composed of olivine pyroxenite, depleted by low-volatile oxides (∼2 wt % of CaO and Al2O3). On the contrary, the lower mantle must be enriched by low-volatile oxides (∼4–6 wt % of CaO and Al2O3). Its composition can be represented by a mineral association of the olivine + clinopyroxene + garnet or olivine + orthopyroxene + clinopyroxene + garnet type, which is close in composition to pyrolite. The temperature distribution at depths 50–1000 km are approximated by the equation: T(°C) = 351 + 1718[1–exp (−0.00082H)]. The constraints inferred make it possible to conclude that the published values of the velocities of P- and S-waves for the lunar mantle, obtained by processing the data of seismic experiments of the Apollo lunar mission are inconsistent with each other at depths below 300 km. Otherwise, the variations in the velocities of P- and S-waves disturb the symmetry between the petrological model (composition), the temperature profile, and the seismic profile.  相似文献   

6.
The October 21, 1766 earthquake is the most widely felt event in the seismic history of Trinidad and Venezuela. Previous works diverged on the interpretation of the historical data available for this event. They associated the earthquake either with the Lesser Antilles subduction zone, with strike-slip motion along El Pilar fault, or with intraplate deformation at the edge of Guyana shield. Isoseismal areas are proposed after a new search and analysis of primary and secondary sources of historical information. Two of the largest earthquakes of the twentieth century which occurred in the region, the 1968 (M S 6.4, h = 103 km), and the 1997 (M W 6.9, h = 25 km) events, for which both intensity data and instrumentally determined source parameters are available, are used to calibrate the isoseismal areas and to interpret them in terms of source depth and magnitude. It is concluded that the large extent of intensity values higher than V is diagnostic of the depth (85 ± 20 km) of the 1766 source, and of local amplifications of ground motion due to soft soil conditions and to strong contrasts of impedance at the edge of Guyana shield. It is proposed that the event occurred either in slab, or close to the bottom lithospheric interface between the Caribbean and South American plates (∼11°N; ∼62.5°W). The value of the magnitude is estimated at 6.5 < M S < 7.5 depending on the source depth and on the decay of ground motion as a function of distance. Deep and intermediate depth earthquakes can induce important casualties in Trinidad, Venezuela, and Guyana, possibly more damaging than those induced by shallower earthquakes along the strike of El Pilar Fault.  相似文献   

7.
Receiver function study in northern Sumatra and the Malaysian peninsula   总被引:1,自引:0,他引:1  
In this receiver function study, we investigate the structure of the crust beneath six seismic broadband stations close to the Sunda Arc formed by subduction of the Indo-Australian under the Sunda plate. We apply three different methods to analyse receiver functions at single stations. A recently developed algorithm determines absolute shear-wave velocities from observed frequency-dependent apparent incidence angles of P waves. Using waveform inversion of receiver functions and a modified Zhu and Kanamori algorithm, properties of discontinuities such as depth, velocity contrast, and sharpness are determined. The combination of the methods leads to robust results. The approach is validated by synthetic tests. Stations located on Malaysia show high-shear-wave velocities (V S) near the surface in the range of 3.4–3.6 km s − 1 attributed to crystalline rocks and 3.6–4.0 km s − 1 in the lower crust. Upper and lower crust are clearly separated, the Moho is found at normal depths of 30–34 km where it forms a sharp discontinuity at station KUM or a gradient at stations IPM and KOM. For stations close to the subduction zone (BSI, GSI and PSI) complexity within the crust is high. Near the surface low V S of 2.6–2.9 km s − 1 indicate sediment layers. High V S of 4.2 km s − 1 are found at depth greater than 6 and 2 km at BSI and PSI, respectively. There, the Moho is located at 37 and 40 km depth. At station GSI, situated closest to the trench, the subducting slab is imaged as a north-east dipping structure separated from the sediment layer by a 10 km wide gradient in V S between 10 and 20 km depth. Within the subducting slab V S ≈ 4.7 km s − 1. At station BSI, the subducting slab is found at depth between 90 and 110 km dipping 20° ± 8° in approximately N 60° E. A velocity increase in similar depth is indicated at station PSI, however no evidence for a dipping layer is found.  相似文献   

8.
The SSQ-1 Digital Tape Recording Horizontal Pendulum Tiltmeter is an instrument of high sensitivity to detect the changes of ground tilt. It uses a quartz horizontal pendulum held by Z?llner bifilar suspension to sense vertical displacement, the eddy-current transducer on the pendulum converts its displacements into electric signals. Then a microcomputer is used for data acquisition and printing as well as digit tape recording. And at the same time, a filtering pen recorder is used for visible recording. The scale value of the instrument is calibrated by computer using the known tilt angle of the bulging plate — mercury cup. The scale value is 0.3–0.5 m(″)/mV. The following are the testing results for the earth tide observation obtained from the east-west component at Baijiatan Seismic Station, Beijing: r(O1): 0.6490±0.0179 α(O1): −3.83°±1.58° r(K1): 0.8049±0.0128 α(K1): 1.40°±0.90° r(M2): 0.6699±0.0040 α(M2): −0.27°±0.34° r(S2): 0.7316±0.0075 α(S2): 2.83°±0.58° r(M3): 0.8497±0.0964 α(M3): 1.61°±6.51° The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,15, 353–359, 1993. In this work also participated Mr. Huai-Wen PAN and Wei-Jin ZHANG. And we here give special thanks to Yun-Zao XI, Qin-Wen XI, Bo-Xong TANG, Yi-Hui CHEN and An-Xu WU for their kind help in the development and test of the instrument. This paper is translated by Mr. Zhong ZHENG.  相似文献   

9.
IntroductionThe development and occurrence of macroseismic activity come from the specific structUreenvironment and stress condition. So the space-time distribUtion of strong quakes appears to bevery inhomogeneous. Earthquakes with Ms27.0 in a seismicity period presented often a speeding-up pattern with time in different seismic provinces. That is, the cumulative frequency of earthquakes with Ms27.0 increase with exponent N(t)=ae', in a seismicity period (ZHANG, FU, 1989).It means that t…  相似文献   

10.
The characteristics of dayside auroras during the large (16–24 nT) positive values of the IMF B z component, observed on January 14, 1988, during the interaction between the Earth’s magnetosphere and the body of the interplanetary magnetic cloud, have been studied based on the optical observations on Heiss Island. A wide band of diffuse red luminosity with an intensity of 1–2 kilorayleigh (kR) was observed during 6 h in the interval 1030–1630 MLT at latitudes higher than 75° CGL. Rayed auroral arcs, the brightness of which in the 557.7 nm emission sharply increased to 3–7 kR in the postnoon sector immediately after the polarity reversal of the IMF B y component from positive to negative, were continuously registered within the band. Bright auroral arcs were observed at the equatorward edge of red luminosity. It has been found out that the red auroral intensity increases and the band equatorward boundary shifts to lower latitudes with increasing solar wind dynamic pressure. However, a direct proportional dependence of the variations in the auroral features on the dynamic pressure variations has not been found. It has been concluded that the source of bright discrete auroras is located in the region of the low-latitude boundary layer (LLBL) on closed geomagnetic field lines. The estimated LLBL thickness is ∼3 R e . It has been concluded that the intensity of the dayside red band depends on the solar wind plasma density, whereas the position of the position equatorward boundary depends on the dynamic pressure value and its variations.  相似文献   

11.
The seismogenic fault and the dynamic mechanism of the Ning’er, Yunnan Province MS6.4 earthquake of June 3, 2007 are studied on the basis of the observation data of the surface fissures, sand blow and water eruption, land-slide and collapse associated with the earthquake, incorporating with the data of geologic structures, focal mecha-nism solutions and aftershock distribution for the earthquake area. The observation of the surface fissures reveals that the Banhai segment of the NW-trending Ning’er fault is dominated by right-lateral strike-slip, while the NNE-trending fault is dominated by left-lateral strike-slip. The seismo-geologic hazards are concentrated mainly within a 330°-extending zone of 13.5 km in length and 4 km in width. The major axis of the isoseismal is also oriented in 330° direction, and the major axis of the seismic intensity VIII area is 13.5 km long. The focal mechanism solutions indicate that the NW-trending nodal plane of the Ning’er MS6.4 earthquake is dominated by right-lateral slip, while the NE-trending nodal plane is dominated by left-lateral slip. The preferred distribution orientation of the aftershocks of MS≥2 is 330°, and the focal depths are within the range of 3~12 km, predominantly within 3~10 km. The distribution of the aftershocks is consistent with the distribution zone of the seismo-geologic hazards. All the above-mentioned data indicate that the Banhai segment of the Ning’er fault is the seismogenic fault of this earthquake. Moreover, the driving force of the Ning’er earthquake is discussed in the light of the active block theory. It is believed that the northward pushing of the Indian plate has caused the eastward slipping of the Qinghai-Tibetan Plateau, which has been transformed into the southeastern-southernward squeezing of the southwest Yunnan region. As a result, the NW-trending faults in the vicinity of the Ning’er area are dominated by right-lateral strike-slip, while the NE-trending faults are dominated by left-lateral strike-slip. This tectonic  相似文献   

12.
 The vesiculation of a peralkaline rhyolite melt (initially containing ∼0.14 wt.% H2O) has been investigated at temperatures above the rheological glass transition (T g≈530  °C) by (a) in situ optical observation of individual bubble growth or dissolution and (b) dilatometric measurements of the volume expansion due to vesiculation. The activation energy of the timescale for bubble growth equals the activation energy of viscous flow at relatively low temperatures (650–790  °C), but decreases and tends towards the value for water diffusion at high temperatures (790–925  °C). The time dependence of volume expansion follows the Avrami equation ΔV (t)∼{1–exp [–(tav) n ]} with the exponent n=2–2.5. The induction time of nucleation and the characteristic timescale (τav) in the Avrami equation have the same activation energy, again equal to the activation energy of viscous flow, which means that in viscous melts (Peclet number <1) the vesiculation (volume expansion), the bubble growth process, and, possibly, the nucleation of vesicles, are controlled by the relaxation of viscous stresses. One of the potential volcanological consequences of such behavior is the existence of a significant time lag between the attainment of a super-saturated state in volatile-bearing rhyolitic magmas and the onset of their expansion. Received: March 20, 1995 / Accepted: October 24, 1995  相似文献   

13.
The December 26, 2004 Sumatra–Andaman Island earthquake, which ruptured the Sunda Trench subduction zone, is one of the three largest earthquakes to occur since global monitoring began in the 1890s. Its seismic moment was M 0 = 1.00 × 1023–1.15 × 1023 Nm, corresponding to a moment-magnitude of M w = 9.3. The rupture propagated from south to north, with the southerly part of fault rupturing at a speed of 2.8 km/s. Rupture propagation appears to have slowed in the northern section, possibly to ∼2.1 km/s, although published estimates have considerable scatter. The average slip is ∼5 m along a shallowly dipping (8°), N31°W striking thrust fault. The majority of slip and moment release appears to have been concentrated in the southern part of the rupture zone, where slip locally exceeded 30 m. Stress loading from this earthquake caused the section of the plate boundary immediately to the south to rupture in a second, somewhat smaller earthquake. This second earthquake occurred on March 28, 2005 and had a moment-magnitude of M w = 8.5.  相似文献   

14.
Based on observations of mesopause emissions, namely, emissions of hydroxyl (band (6-2)) and molecular oxygen (band (0-1) of the atmospheric system), their systematic nighttime and seasonal variations are determined at Zvenigorod Observatory in 2000–2008. It is shown that the intensity of hydroxyl emission decreases during the entire night or first half-night, probably due to the influence of the chemical sink of atomic oxygen on the nighttime behavior of hydroxyl emission. The nighttime behavior of the intensity of molecular oxygen emission is explained by the action of atmospheric tides. The seasonal behavior of emissions is characterized by two minima, in April–May and December; it is caused by the annual behavior of the atomic oxygen content, temperature, and atmospheric density in the emitting layer. Based on the emission data, we determined the seasonal variations of atomic oxygen at heights of ∼87 km (maximum of hydroxyl emission) and ∼95 km (maximum of molecular oxygen emission).  相似文献   

15.
Automated detection of fog and low stratus in nighttime satellite data has been implemented on the basis of numerous satellite systems in past decades. Commonly, differences in small-droplet emissivities at 11μm and 3.9μm are utilized. With Meteosat SEVIRI, however, this method cannot be applied with a fixed threshold due to instrument design: The 3.9μm band is exceptionally wide and overlaps with the 4μm CO2 absorption band. Therefore, the emissivity difference varies with the length of the slant atmospheric column between sensor and object. To account for this effect, the new technique presented in this paper is based on the dynamical extraction of emissivity difference thresholds for different satellite viewing zenith angles. In this way, varying concentrations of CO2 and column depths are accounted for. The new scheme is exemplified in a plausibility study and shown to provide reliable results.  相似文献   

16.
We have analyzed variations in the near-surface atmospheric electric field (Ez) normalized to their daily averages that were simultaneously observed in different high-latitude regions at moderate geomagnetic activity (Kp ∼ 3). The Ez data were measured under fair weather conditions at the Vostok Antarctic research station (Φ′ = −83.5°) in the southern polar cap and at the Hornsund Arctic observatory (Φ′ = 74.0°) on Svalbard close to the polar boundary of the auroral oval in the Northern Hemisphere. It is established that variations in the atmospheric electric field in the polar cap region at the Vostok station are controlled (the correlation coefficient R ∼ 0.7–0.9) by variations in the overhead ionospheric potential. The situation at the Hornsund observatory is more complicated. During intervals when Hornsund occurred below the westward electrojet, the correlation was typically positive with R ∼ 0.60–0.85; however, while this observatory was in the region of the eastern electrojet, the correlation could be negative with R ∼ 0.7–0.8. Normally, during such periods, the westward electrojet was detected polarwards of Hornsund while, according to the SuperDARN radar data, the observatory was located below the negative vortex of the polar ionospheric convection.  相似文献   

17.
We present a study of peculiarities of the winter nighttime maximum in the critical frequencies f 0 F2 at mid-latitudes of the Asian region. The data of stations located at different longitudes and close latitudes have been used in the analysis: Novosibirsk (54.8°N, 83.2°E), Irkutsk (52.5°N, 104.0°E), and Khabarovsk (48.5°N, 135.1°E). It has been found that the nighttime maximum in f 0 F2 is observed after midnight (∼0200–0400 LT) and is a stable feature of the quiet ionosphere from the middle of October to the middle of March at low solar activity (SA) at all analyzed stations. This interval decreases with increasing SA. The difference between the maximal and minimal f 0 F2 values in nighttime hours is the largest in December–January, and its amplitude is almost independent of SA. Variations in the critical frequency of the h m F2 layer are inversely related to those in the height of the maximum. We have studied periods when the difference between the daytime and nighttime values of f 0 F2 is less than 2 MHz. The intervals of observations of such events at different longitudes do not coincide. No dependence of the winter nighttime maximum amplitude on magnetic activity has been found.  相似文献   

18.
The source parameters of the M W = 7.6 Olyutorskii earthquake were estimated using the moments of the slip rate function with degrees 1 and 2. The moments were estimated from broadband P-wave records at 52 stations of the worldwide network. The first step was to find a function S(t) for each station; this function is an apparent source time function, i.e., the P-wave slip as radiated by the source toward a station under consideration. The method of empirical Green’s functions was used to estimate S(t). The next step was to calculate the moments of S(t) of degrees 1 and 2 over time and to set up relevant equations to be solved by least squares for the unknown source moments. The horizontal linear source was used as a nonparametric model for calculating the source moments. Haskell’s parametric model was used for further interpretation of the source moments. The resulting estimates are as follows: the source centroid was 13–25 km southwest of the epicenter, the source was 105–120 km long, the source strike was 222°–228°, the rupture velocity was 2.7–3.0 km/s, and the total radiation duration was 24–27 s. These estimates indicate a bilateral rupture dominated by a southwestward sense of rupture propagation. The source characteristics are consistent with the aftershock area geometry and with the focal mechanism, as well as with surface breakage as observed by geologists in the field.  相似文献   

19.
The results from Raman spectroscopy analysis of salt aqueous solutions at −170°C demonstrate that for those clearly sharp iron peaks whose Raman wavenumber is close to each other such as NO 3 and CO 3 2− , their original shape could be restorable by the stripping technique, and that ice’s sharp characteristic peak 3090–3109 cm−1) is steady, while the spectrum band of the complex compound (nCl-[H+-OH]n) chlorine ion combined chemically with water molecule is 3401–3413 cm−1. On the other hand, the research shows that the higher the negative iron concentration, the stronger its Raman characteristic peak intensity and the smaller the ice’s. Based on the number of data and theoretical work, the strong correlation of the molar concentration of negative ion with the S i/S H 2O band area ratio is built up. Moreover, the developed Raman method is successfully used in the component analysis of the field fluid inclusions from Silurian sandstone in Tarim basin.  相似文献   

20.
The effect of anomalously high average nighttime intensities of the atomic oxygen 557.7-nm atmospheric emission (luminescence heights 85–115 km) during sudden winter stratospheric warming events (SWEs) in Eastern Siberia is considered. Analysis of the variations in the 557.7-nm emission intensity (I 557.7) revealed the interdaily I 557.7-nm variations during SWEs and high average monthly I 557.7-nm values in the winter months in conditions of high solar activity. It has finally been found that the variations with periods of several days, at a maximum of which anomalously high daily values of I 557.7 are observed, are superposed on the average I 557.7-level during SWEs at high solar activity. A high average level of I 557.7 in the winter months in Eastern Siberia can be related to the fact that the atomic oxygen concentration at altitudes of the 557.7 nm emission luminescence increases by a factor of 2–3 in years of high solar activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号