首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
《能源学会志》2020,93(1):210-223
By introducing exogenous nitrogen during biomass pyrolysis under nitrogen-rich conditions, high-value nitrogen-containing products, i.e., nitrogen-rich char and oil may be produced. Based on the cogeneration of high-value nitrogen products from biomass, biomass nitrogen-enriched pyrolysis was performed in a fixed bed with different sources and contents of ammonia. The yields, composition and characteristics of the products were investigated. Moreover, the formation mechanism of N-containing species was explored in depth for the pyrolysis and catalytic pyrolysis with HZSM-5 and Zn/HZSM-5 catalysts via elemental analysis, XPS, FTIR and BET. The results showed that ammonia impregnation could promote a Maillard reaction, reduce the content of small aldehydes and ketones, and produce a nitrogen-enriched bio-oil. The contents of N-containing species and phenolic substances in the pyrolysis oil of biomass impregnated with 10% urea reached 15.66% and 56.69%, respectively. Moreover, the nitrogen on the coke surface after pretreatment was mainly composed of CN, CN and NCOO functional groups. The bio-char generated abundant pyridinic-N, pyrrolic-N, quaternary-N, and pyridone-N oxides. The presence of urea introduced many alkaline N-containing functional groups on the surface of the bio-char and promoted the transformation of nitrogen from amides and imides to heterocyclic nitrogen with higher thermal stability. Furthermore, Zn was an excellent catalyst for the Maillard reaction, and the Zn/HZSM-5 catalyst had a higher selectivity for aromatic hydrocarbons (96.98% for biomass and 86.48% for urea/biomass) and N-containing heterocyclic compounds, such as indoles (6.16% for biomass and 13.51% for urea/biomass). Additionally, the coke content decreased, and the catalyst deactivation decreased.  相似文献   

2.
The present work aims to investigate the thermal behavior, kinetics, thermodynamics, and product distribution during copyrolysis of transition metal salt (Ni, Co, Zn, Cu, and Fe)-added biomass and model compounds with low density polyethylene(LDPE) over a Ni-based HZSM-5 catalyst by TGA and fixed bed reactor. The interactions and reaction mechanisms during copyrolysis were evaluated. The influence of Ni-impregnated biomass (C-M) and Ni-modified HZSM-5 (Ni/HZ) on the formation of pyrolysis bio-oil from biomass and model compounds and its subsequent effect on catalytic pyrolysis vapor upgrading was discussed. The results indicated that the presence of transition metal decreased the thermal degradation temperature and thermodynamics parameters; maximum decomposition rate, and reaction complexity. Ni/HZ catalyst could further decrease the activation energy, accelerate the reaction rate and change reaction process, and the modified samples/LDPE under copyrolysis with HZSM-5 catalyst presented a more significant effect than Ni/HZ catalyst. Subsequently, the Ea of pine, cellulose and lignin changed from 24.11, 18.29, and 28.68 kJ/mol (CP@Ni/HZ) to 56.04, 69.84, and 16.21 kJ/mol (CP-Ni@HZSM-5), respectively. In addition, Ni could inhibit the depolymerization of cellulose and promoted the formation of char, coke, and lignin derived phenolics. And Ni-impregnated biomass reduced the formation of desired aromatic hydrocarbons, but result in increasing of the char and non-condensable gases. But Ni/HZ catalysts promote the conversion of biomass to target products.  相似文献   

3.
《能源学会志》2020,93(1):425-435
A higher amount of oxygenates is the main constraint for higher yield and quality of aromatics in catalytic pyrolysis while a study of hydrocarbon production with a balance of reactive species lies importance in the catalytic upgrading of pyrolytic vapor. Catalytic pyrolysis of pinewood sawdust over acidic (ZSM-5) and basic (CaO) catalyst was conducted by means of Py-GC/MS to evaluate the effect of biomass to catalyst loading ratio on aromatic hydrocarbon production. Catalytic pyrolysis with four different biomass to catalyst ratios (0.25:1, 0.5:1, 1:1, and 2:1) and non-catalytic pyrolysis were conducted. It has been obtained that ZSM-5 showed better catalytic activity in terms of a high fraction of aromatic hydrocarbon. The ZSM-5 catalyst showed a potential on the aromatization as the yield of aromatic hydrocarbon was increased with a higher amount of ZSM-5 catalyst and the highest yield of aromatics (42.19 wt %) was observed for biomass to catalyst ratio of 0.25:1. On the other hand, basic CaO catalyst was not selective to aromatic hydrocarbon from pinewood sawdust but explored high deacidification reaction in pyrolytic vapor compared to ZSM-5 catalyst, whereas non-catalytic pyrolysis resulted in acidic species (13.45 wt %) and phenolics (46.5 wt %). Based on the results, ZSM-5 catalyst can only be suggested for catalytic pyrolysis of pinewood sawdust for aromatic hydrocarbon production.  相似文献   

4.
《能源学会志》2020,93(4):1737-1746
The aim of this study was to investigate the potential of combined catalyst (ZSM-5 and CaO) for high quality bio-oil production from the catalytic pyrolysis of pinewood sawdust that was performed in Py-GC/MS and fixed bed reactor at 500 °C. In Py-GC/MS, the maximum yield of aromatic hydrocarbon was 36 wt% at biomass to combined catalyst ratio of 1:4 where the mass ratio of ZSM-5 to CaO in the combined catalyst was 4:1. An increasing trend of phenolic compounds was observed with an increasing amount of CaO, whereas the highest yield of phenolic compounds (31 wt%) was recorded at biomass to combined catalyst ratio of 1:4 (ZSM-5: CaO - 4:1). Large molecule compounds could be found to crack into small molecules over CaO and then undergo further reactions over zeolites. The water content, higher heating value, and acidity of bio-oil from the fixed bed reactor were 21%, 24.27 MJkg−1, and 4.1, respectively, which indicates that the quality of obtained bio-oil meets the liquid biofuel standard ASTM D7544-12 for grade G biofuel. This research will provide a significant reference to produce a high-quality bio-oil from the catalytic pyrolysis of woody biomass over the combined catalyst at different mass ratios of biomass to catalyst.  相似文献   

5.
To solve the problem of low aromatic hydrocarbon yield and selectivity in biomass catalytic pyrolysis, we used added oxygen-containing hydrogen supplier of rubber seed oil (RSO) with a higher hydrogen-to-carbon ratio to investigate the thermal decomposition behaviors, kinetic and production distribution of biomass, cellulose and RSO with the weight ratio of 1:2 using thermogravimetric analyzer (TGA) for kinetic analysis and fixed bed reactor with the feed composition of 1.2 g: 0.4 mL/min (Biomass to RSO) for product distribution in non-catalytic and catalytic co-pyrolysis over a HZSM-5 catalyst. The results show that there was a positive synergistic interaction between biomass and RSO according to the difference in weight loss, which could decrease the formation of solid coke at the end of experiment. The addition of the HZSM-5 catalyst can markedly increase the reaction activity, accelerate the reaction rate, and the reaction Ea, leading to a substantial increase in the conversion rate; furthermore, the residual carbon content will decrease, and the activations of Cellulose + RSO + Catalyst and Biomass + RSO + Catalyst are only 50.80 kJ/mol and 62.36 kJ/mol, respectively. The kinetic analysis showed that adding a catalyst did not change the decomposition mechanism. Co-pyrolysis of biomass and RSO could effectively improve the yield and selectivity of aromatics, when the pyrolysis temperature and catalytic temperature were 550 °C and 500 °C, respectively, the mass space velocity of RSO was 0.4 mL/min, the reaction time was 30min, the yields of benzene, toluene, xylene and ethyl benzene (BTXE) were up to 78.77%, and the selectivity of benzene, toluene and xylene was much better. Finally, the coke yield was substantially lower.  相似文献   

6.
Pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) was employed to achieve fast pyrolysis of xylan and on-line analysis of pyrolysis vapors. Tests were conducted to investigate the effects of temperature on pyrolytic products, and to reveal the effect of HZSM-5 and M/HZSM-5 (M= Fe, Zn) zeolites on pyrolysis vapors. The results showed that the total yield of pyrolytic products first increased and then decreased with the increase of temperature from 350°C to 900°C. The pyrolytic products were complex, and the most abundant products included hydroxyacetaldehyde, acetic acid, 1-hydroxy-2-propanone, 1-hydroxy-2-butanone and furfural. Catalytic cracking of pyrolysis vapors with HZSM-5 and M/HZSM-5 (M= Fe, Zn) catalysts significantly altered the product distribution. Oxygen-containing compounds were reduced considerably, and meanwhile, a lot of hydrocarbons, mainly toluene and xylenes, were formed. M/HZSM-5 catalysts were more effective than HZSM-5 in reducing the oxygen-containing compounds, and therefore, they helped to produce higher contents of hydrocarbons than HZSM-5.  相似文献   

7.
采用多孔陶瓷载体担载V2O5-WO3-SiO2/TiO2催化剂研究NH3选择性催化还原气体中的氧化氮,在固定床积分反应器中考察了温度、NH3投入量、接触时间对SCR反应的影响,实验结果表明,多孔陶瓷载体可提供较大的比表面积,催化剂活性组分负载均匀;催化剂具有良好的催化活性,催化剂能在适宜反应条件下:反应温度、接触时间、n(NH3/NO)分别是350℃,0.8~1.0s,1.25:1,此时NO转化率可达90%以上。并根据实验结果进行了反应动力学行为的分析,求出了动力学参数。  相似文献   

8.
Metal based-zeolite catalysts were successfully prepared by two different methods including ion-exchange and wet impregnation. HZSM-5 synthesized by hydrothermal method at 160 °C was used as a support for loading metals including Co, Ni, Mo, Ga and Pd. The metal/HZSM-5 had surface area and pore size of 530–677 m2/g and 22.9-26.0 Å. Non- and catalytic fast pyrolysis of Jatropha residues using metal/HZSM-5 were studied using an analytical pyrolysis-GC/MS at 500 °C. Non-catalytic pyrolysis vapors contained primarily high levels acid (50.7%), N-containing compounds (20.3%), other oxygenated compounds including ketones, alcohols, esters, ethers, phenols and sugars (25.0%), while generated small amount of aromatic and aliphatic hydrocarbons of 3.0% and 1.0%. The addition of synthesized metal/HZSM-5 improved the aromatic selectivity up to 91–97% and decreased the undesirable oxygenated (0.6–4.0%) and N-containing compounds (1.8–4.6%). The aromatic selectivity produced by metal-ion exchanged catalysts was slightly higher than that produced by impregnated ones. At high catalyst content (biomass to catalyst ratio of 1:10), Mo/HZSM-5 showed the highest aromatic selectivity of 97% for ion-exchanged catalysts and Ga/HZSM-5 revealed the highest aromatics of 95% for impregnated catalysts. The formation of aromatic compounds could be beneficial to improve calorific values of bio-oils. The presence of metal/HZSM-5 from both preparation methods greatly enhanced MAHs selectivity including benzene, toluene, and xylene (BTX), while substantially reduced unfavorable PAHs such as napthalenes.  相似文献   

9.
阐述了氨法钛钒基选择催化还原催化剂脱硝原理,并且归纳总结其失活机理,针对工程实际情况,提供相应预防方法,以便提高烟气脱硝催化剂管理水平,延长催化剂寿命,降低烟气脱硝运行成本,对其他催化剂运行管理提供借鉴。  相似文献   

10.
V2O5-WO3/TiO2 catalyst has been widely used in industry. Alkali metals would cause the deactivation of V2O5-WO3/TiO2 catalyst. In this paper, the poisoning deactivation of NaCl and Na2O on V2O5-WO3/TiO2 catalyst was compared. The properties of the catalysts were characterized by BET, XPS, H2-TPR, NH3-TPD and in situ DRIFTS. It was found the addition of NaCl, Na2O affected the structure, redox properties and acid sites of V2O5-WO3/TiO2 catalyst. Na+ would react with VOH to form VONa+ destroying the structure of Brønsted sites and affect the adsorption of NH3 on the Lewis acid to restrain the generation of V4+NH2 to decrease the SCR activity, occupying the oxygen vacancy made a decline in chemisorbed oxygen. The poisoning effect of NaCl was stronger than that of Na2O, even if the property of weak-chemisorption of NaCl is stronger and possessed more V5+ species. There is a reason that NaCl provided HCl and then reacted with VO2 to form ClVOClOH to adsorb NH3. However, ClVOClOH cannot make the catalysis selectively generate nitrogen and water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号