首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用等温热压缩试验研究2099合金在变形温度300~500℃、应变速率0.001~10s-1条件下的热变形行为。为了准确地表征流变行为,采用摩擦与温度修正后的实验数据构建本构模型。结果表明,温度和应变速率对合金热变形行为的影响可用包含Arrhenius关系的z参数来表征。此外,通过计算不同应变量下的材料常数(a、n、Q和A)考虑了应变对本构模型的影响。利用统计分析对比了由本构模型获得的预测曲线与试验修正曲线,二者显示了很好的吻合,这表明所构建的本构模型能够很好地预测2099合金的热变形流变行为。  相似文献   

2.
采用高温等温压缩试验并利用修正后的流变曲线,研究了2099 Al-Li合金在变形温度为300~500℃,应变速率为0.001~10 s-1,变形量(真应变)为0.7条件下的流变行为。结果表明:可用包含Z参数的双曲正弦形式来表征变形温度和应变速率对2099 Al-Li合金热变形行为的影响;将应变作为影响因素,求解了不同应变量下的材料常数,并构建了考虑应变的本构模型;统计分析结果表明,除了在变形温度为300℃,应变速率为10 s-1之外,该模型能够很好的预测2099 Al-Li合金高温流变行为。  相似文献   

3.
在应变速率0.001~1 s-1、温度573~823 K的条件下,采用Gleeble 3500热模拟试验机对Al-14Cu-7Ce合金进行等温热压缩实验,并根据真应力-真应变的计算数值,建立了Al-14Cu-7Ce合金高温流变应力本构方程。结果表明,流变应力符合速率方程€=ADLGb/kT(sinhaLG)n;其中,应变的影响通过多项式拟合方式耦合进入材料常数A,αL和n。所建立的本构方程能够准确预测Al-14Cu-7Ce合金高温流变应力,实验条件下控制合金热变形的主要机制是位错攀移。  相似文献   

4.
采用Gleeble热力模拟试验机对Mg-Zn-Zr-Y合金进行了高温压缩变形实验,分析了合金在变形温度为573~723K、应变速率为0.001~1 s-1范围内的流变行为。结果表明,热变形条件对流变特征和流变应力影响显著,流变曲线呈现"饱和非线性"和"正偏态分布"2种特征,应力水平随着变形温度的降低和应变速率的增大而提高。基于Arrhenius和Zener-Holloman方程,线性拟合确定了合金的表观变形激活能(Q=152.307 k J·mol~(-1))和应力指数(n=5.521)等参数,建立了描述塑性流变行为的本构方程。结果显示,该本构模型数值计算出的流变应力理论值与实验结果的吻合程度依赖于热变形条件的取值范围,与"饱和非线性"稳态流变特征的塑性变形行为基本吻合;而与加工硬化突出的"正偏态分布"流变行为存在一定偏差,引起理论峰值应变前移,但峰值应力水平仍基本符合。表明该本构模型在Mg-Zn-Zr-Y合金中表现出较好的实用性,尤其适用描述高变形温度(623 K)和低应变速率(0.01 s~(–1))下稳态塑性变形行为。  相似文献   

5.
为了建立精确模拟6063铝合金高温流变应力的本构方程,在温度为573~773 K和应变速率为0.5~50 s-1的条件下,采用Gleeble-1500热模拟机进行等温热压缩实验。结果表明:可以采用参数Z描述温度和应变速率对6063铝合金热变形行为的影响,建立的本构方程中的材料常数(α,n,Q和A)可以表示成应变的4次多项式函数。模拟结果表明:所建立的本构方程能精确预测6063铝合金高温流变应力,因此,本构方程适合用于模拟热变形过程,如挤压和锻造,并且可以在工程应用中正确设计变形参数。  相似文献   

6.
尹茸  孙嘉言  许庆彦 《铸造》2023,(9):1091-1098
在镍基高温合金力学本构模型构建的过程中,使用小样本机器学习方法,结合数据增强、网络结构优化、迁移学习等方法,构建了小样本神经网络模型,降低了对实验数据量的依赖性,经过测试,模型精度高于一般BP神经网络和唯象型本构模型。  相似文献   

7.
根据2099-T83铝锂合金在温度为120~160℃的真应力-应变曲线,选择4种常用的本构模型:Johnson-Cook模型、Modified Johnson-Cook模型、Modified Zerilli-Armstrong模型和Voce方程,对比研究上述4种本构模型对该合金的流变应力的预测能力,并对上述模型进行误差分析。结果表明:随着温度的增加,采用Modified Zerilli-Armstrong模型和Voce方程得到的应力计算值与实验值较为吻合,而采用Johnson-Cook模型和Modified Johnson-Cook模型得到的应力计算值与实验值之间存在较大误差; Johnson-Cook模型和Modified Johnson-Cook模型的平均相对误差绝对值AARE分别达到12.286%和6.238%,而ModifiedZerilli-Armstrong模型和Voce方程的AARE值分别为2.099%和0.184%。另外,采用Voce方程计算得到的预测值与实验值之间具有最高的相关性。说明具有物理意义的本构模型在研究和预测该合金流变行为的能力上是优于唯像本构模型的。  相似文献   

8.
通过在Gleeble-3500型热模拟实验机上对GH5188合金进行等温热压缩实验,在变形温度为1030~1150℃、应变速率为0.01~10s-1的条件下,研究其热压缩变形的流变应力变化规律。在应力-应变结果的基础上,采用引入应变量因素的Arrhenius方程,建立了描述GH5188合金高温变形特性的本构方程。结果表明:变形温度和应变速率对GH5188合金流变应力影响显著,随变形温度升高和变形速率的降低,相同变形程度下合金的流变应力显著降低,并且在较低的应变下合金即可达到稳态流变状态。GH5188合金流变应力计算值和实验值相对误差较小,所建立的本构方程具有良好的预测能力。  相似文献   

9.
采用Gleeble-1500热模拟实验机研究铝钨合金在变形温度为450℃~540℃、应变速率为0.001s-1~1s-1下单道次压缩过程的高温流变行为。基于BP神经网络建立铝钨合金本构关系模型。在该模型中,输入变量为应变、应变速率和变形温度,输出变量为流变应力。与传统方法相比,该本构关系模型的测试数据可以为描述整个变形过程提供一个很好的代表性,也为开发铝钨合金本构关系提供方便和有效的途径。  相似文献   

10.
6061铝合金高温拉伸流变行为   总被引:1,自引:0,他引:1  
利用Gleeble3500热模拟试验机对6061铝合金进行高温拉伸实验,研究变形温度为365℃~565℃和应变速率为0.01s-1~1s-1条件下6061铝合金的高温拉伸流变行为。结果表明,6061铝合金属于正应变速率敏感材料,流变应力随应变速率的增加而增大,随温度的增加而降低;通过线性回归分析计算6061铝合金的应力指数n及变形激活能Q,获得其高温拉伸条件下的流变应力本构方程。  相似文献   

11.
采用Gleeble-1500D热模拟实验机,研究了Mg-3.5Zn-0.6Y-0.5Zr合金在变形温度为300~450℃、变形速率为0.002~1s-1及变形量为50%的条件下的高温压缩变形行为,分析了流变应力与应变速率、变形温度的关系,计算了高温变形时变形激活能和应力指数,建立了该合金的本构方程。结果表明:Mg-3.5Zn-0.6Y-0.5Zr合金在热变形过程中真应力随着温度的升高而降低,真应力随着应变速率的升高而升高。该合金的流动应力可以用双曲正弦函数来描述。  相似文献   

12.
在变形温度700~860 ℃、应变速率0.001~1 s-1下,对TB6合金进行热压缩变形,以研究TB6合金的热压缩流变应力行为.研究温度、变形量、应变速率等因素对TB6热变形流变应力的影响,建立了TB6合金热变形流变应力的本构模型方程.结果表明:合金在热压缩过程中,流变应力随着应变的增大而增加,达到峰值应力后逐渐趋于平稳;应力峰值随着应变速率的增大而增大,随着温度的升高而呈减小趋势.  相似文献   

13.
在温度623~773 K和应变速率0.01~1 s-1条件下,采用等温压缩试验研究析出硬化AA7022-T6铝合金的热力学行为。结果表明,动态再结晶是主要的热变形机制,特别是在高温和低应变速率下。采用改进的JohnsonCook (J-C)模型和应变补偿Arrhenius模型预测不同变形条件下的热流变行为。这两种模型的线性相关系数分别为0.9914和0.9972,平均相对误差(ARE)分别为6.074%和4.465%,均方根误差(RMSE)分别为10.611和1.665 MPa。结果表明,应变补偿Arrhenius模型能准确预测AA7022-T6铝合金的热流变应力。  相似文献   

14.
曾胜  常海平  张金  王锐  罗文哲 《锻压技术》2022,47(4):242-248
A356铝合金的高温流变特性和本构模型对其应力状态起着重要的作用,为铝合金流变成形过程的有限元模拟奠定了重要的基础.从A356铝合金轮毂铸造坯料上制取拉伸试样,利用Instron 3369型实验机进行等温拉伸实验,实验温度为300~375℃,应变速率为0.001~0.1 s-1.由此得到的真应力-真应变曲线表明,温度和...  相似文献   

15.
通过20MnNiMo钢多组试样的热压缩实验获得应变速率为0.01~10 s-1、变形温度为1173~1473 K条件下的真应力-应变数据。结合Arrhenius双曲正弦本构方程,通过线性回归分析求解得到不同变形条件下本构模型中的热变形激活能Q,材料常数n、α及结构因子A,从而构建了用于表征20MnNiMo钢流变应力与应变量、温度、应变速率之间内在关系的本构方程。研究结果表明:20MnNiMo钢在热压缩变形过程中发生了明显的动态软化行为,流变应力水平随应变速率的增加而增加,随温度的升高而降低;流变应力的预测值与实验值较吻合,而且预测的最大相对误差仅为7.54%。  相似文献   

16.
为了研究Ti6321合金在高温、高应变率下的力学行为,采用分离式霍普金森压杆装置对Ti6321合金进行室温(25℃)和高温(200、400、600℃)动态压缩试验,对其在高温和高应变率下的力学性能、应变率敏感性和温度敏感性进行了研究。采用聚类全局优化算法构建了双态组织Ti6321合金在103s-1下的Johnson-Cook本构模型。结果表明,双态组织Ti6321合金在室温和高温下均存在应变率硬化效应,但试验温度对流变应力的影响比应变率的影响更大。随着压缩试验温度升高,流变应力显著降低,温度敏感因子升高。Johnson-Cook模型拟合的曲线与实验曲线吻合良好,可以用于Ti6321合金高应变率下的力学仿真计算。  相似文献   

17.
以NUMISHEET 2016 BM3中5系铝合金AA5086-H111为研究对象,建立其准静态温拉伸流变应力的本构模型。该材料在室温状态下的流变应力表现为负应变率敏感性; 150℃时,随着应变率增加,由负应变率敏感性变为正应变率敏感性;240℃时为正应变率敏感性。针对传统指数型应变率相关项是一种单调函数,构成的本构模型一般用来描述正应变率敏感性的流变行为,很难表征这种复杂应变率敏感性流变行为的问题,给出了一种新的应变率相关项,并称其值为健壮系数。在不同应变率范围内,健壮系数可以表现出不同的单调性。结果表明,耦合新应变率相关项的本构模型可以较好地表征AA5086-H111在不同温度、不同应变率下的流变行为。  相似文献   

18.
采用昂热力学实验室高温拉伸实验机对Al2024合金进行高温拉伸实验,实验温度为350、400和450℃,应变速率为1×10~(-3)、5×10~(-4)和1×10~(-4)s~(-1),获得应力-应变曲线。借助Arrhenius方程对实验数据进行拟合,考虑到应变量对流变应力的影响,建立各材料参数与应变量的关系,并通过三次方程表示,从而对本构方程进行修正。结果表明:Al2024合金在高温拉伸过程中会发生再结晶,出现软化现象;合金在实验温度下表现出较好的塑性,在450℃下伸长率达到80%以上;拟合得到的本构方程具有较高的精确性,误差小于5%,可以用于仿真模拟。  相似文献   

19.
为研究超高强度钢板在高温下的热流变行为,以硼钢22MnB5为研究对象,利用Gleeble-1500D热模拟试验机,在600~ 900℃温度区间,分别以0.01,0.1和ls-1的应变速率对样件进行等温拉伸试验,得到不同条件下的应力-应变关系曲线,试验表明,温度、应变速率、应变量对流变应力的影响存在相互作用.采用拟合多项式系数的方法拟合不同因素对流变应力的影响,建立硼钢22MnB5高温下的热流变行为的本构模型,计算结果与试验结果很好地吻合,验证了建立的本构关系模型能较为准确地预测不同条件下的应力-应变关系.  相似文献   

20.
利用变形态Ti40合金在变形温度范围为1223~1323K和应变速率范围为0.001~1.0s-1的不同应变下的热压缩实验数据研究了该材料的高温流变应力模型。利用实验数据分析了Arrhenius型方程对变形态Ti40合金的适用性,结果表明,采用双曲正弦型Arrhenius方程建立该材料的高温流变应力模型是适宜的,并通过对双曲正弦方程进行温度补偿及引入路径变量因子改进了模型。通过计算复相关系数和平均相对误差绝对值对该模型进行误差分析,经过改进的变形态Ti40合金的高温流变应力模型具有良好的精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号