首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
在变形温度280~400℃、应变速率0.001~1 s~(-1)、最大变形量50%的条件下,采用等温压缩实验研究了铸态镁合金AZ91D塑性变形和微观组织演变行为。结果表明:AZ91D热压缩变形中发生了不同程度的动态再结晶,提高变形温度和降低变形速率有利于促进动态再结晶晶粒的形核和长大,动态再结晶体积分数随真应变增大呈现慢-快-慢的增长规律。在对实验数据回归分析的基础上,建立了AZ91D动态再结晶临界条件、动力学方程和晶粒尺寸预测模型,并通过定量金相实验结果验证了该模型的合理性。  相似文献   

2.
《塑性工程学报》2016,(1):104-111
采用Gleeble-1500对AZ80镁合金进行热压缩实验,研究其在变形温度为573K~723K、应变速率为0.001s~(-1)~1s~(-1)条件下的高温变形特性及动态再结晶行为。根据真实应力-应变曲线,建立了考虑应变影响的双曲正弦本构模型,模型计算的应力值与实验值相对误差为2.52%。利用未再结晶区的真实应力-应变曲线,建立了AZ80镁合金的动态再结晶动力学模型。  相似文献   

3.
采用真空压力浸渗法制备了短切碳纤维体积分数为15%的AZ91D镁基复合材料(C_sf/AZ91D),通过等温恒应变率压缩试验,研究了复合材料在变形温度为400~460℃、应变速率为0.001~0.1s~(-1)、最大真应变为0.7条件下的流变应力和动态再结晶行为。结果表明,复合材料流变应力曲线呈现显著的动态再结晶软化特征,动态再结晶临界应变随变形温度升高或应变速率降低而减小,其与Z参数之间的函数关系为εc=1.6×10~(-3) Z~(0.037 2);动态再结晶临界应变和峰值应变之间的关系为ε_c=0.385 2ε_p;同等变形条件下,复合材料动态再结晶的临界应变远小于AZ91D镁合金,短切碳纤维促进了基体镁合金动态再结晶发生,同时细化了其再结晶晶粒。  相似文献   

4.
采用等温恒速率压缩试验研究了铸态AZ91D镁合金的热变形行为,根据试验结果,基于动态材料模型建立了应变为0.4和0.6时的热加工图。结果表明,AZ91D镁合金的流变应力随着变形温度升高或应变速率降低而减小,流变应力曲线呈现明显的应变软化特征,AZ91D镁合金热加工失稳区随着压缩变形量的增加有扩大的趋势,在高温高应变速率失稳区,导致变形失稳的主要原因是绝热剪切引起的晶界裂纹;在低温高应变速率失稳区,不均匀动态再结晶细晶区形成局部剪切带是引起变形不均匀和流变失稳的主要机制。  相似文献   

5.
采用热模拟实验方法获得了AZ31镁合金热变形真实应力-真实应变曲线,分析了变形工艺参数对AZ31镁合金热变形动态再结晶晶粒尺寸的影响规律。随着塑性变形应变速率的增大,动态再结晶晶粒尺寸减小。随着塑性变形温度的升高,晶粒尺寸增大。基于Yada模型,建立了AZ31镁合金热变形动态再结晶晶粒尺寸与变形工艺参数关系模型,以及动态再结晶临界应变与变形温度关系模型。晶粒尺寸预测模型计算值与实验值相吻合,最大相对误差为8.5%。临界应变模型计算值与实验值相吻合,最大相对误差为8.1%。建立的动态再结晶晶粒尺寸预测模型和临界应变预测模型的适用条件为变形温度250~400℃,应变速率0.01~1.0 s-1。  相似文献   

6.
采用热模拟实验方法测试了AZ80镁合金材料的真实应力-应变曲线, 变形温度范围533K - 683K, 应变速率范围0.001 - 10 s-1, 变形程度为50%。动态再结晶的晶粒尺寸随着变形温度的升高和应变速率的降低而增大。确定了AZ80镁合金的热激活能, 确定了AZ80镁合金材料热变形时的本构方程。根据Sellars方程, 确定了AZ80镁合金的动力学模型, 其定义为描述发生动态再结晶体积分数与变形温度和应变速率的函数关系。确定了AZ80镁合金的运动学模型, 其定义为描述动态再结晶晶粒尺寸与Z函数之间数学关系. 动态再结晶晶粒尺寸的模型计算结果与实验结果相吻合,相对误差小于11.8%。确定了临界应变和稳态应变与Z函数之间数学关系。  相似文献   

7.
采用Gleeble-1500D型热/力模拟试验机在变形温度300~450℃、应变速率0.005~1 s-1条件下对AZ41M镁合金进行热模拟压缩试验。用计算加工硬化率的方法处理试验数据,再结合lnθ-ε曲线的拐点及–?(lnθ)/?ε-ε曲线最小值判据,建立合金热变形过程中的动态再结晶临界应变模型。根据热压缩实验数据,分析温度和应变速率等工艺参数对合金动态再结晶的影响。结果表明:在该实验条件下,AZ41M镁合金的lnθ-ε曲线均具有拐点特征,对应的-?(lnθ)/?ε-ε曲线均出现最小值,该最小值所对应的应变即为临界应变εc,得到合金临界应变预测模型;临界应变随变形温度的降低和应变速率的增加而增大,且峰值应变εp和临界应变εc的比值满足εp/εc=1.97。  相似文献   

8.
通过Gleeble-3500热变形模拟机对半连续铸态镁合金AZ31进行热压缩,变形温度为300~450℃,应变速率为0.01~1.00 s-1,得出应力-应变曲线后进行线性回归处理,建立了动态再结晶动力学模型,而后通过对热压缩中的动态再结晶过程进行有限元分析,将模拟的再结晶结果与实验结果进行比较验证。结果表明,随着变形温度的升高或者应变速率的降低,动态再结晶分数增加。同时,变形温度越低,应变速率越高,再结晶晶粒尺寸越细小。预测的晶粒尺寸、分布与试验结果一致。  相似文献   

9.
利用Gleeble-1500型热模拟机,在应变速率为0.01~1s-1、变形温度为593~653K的变形条件下,对AZ80A镁合金进行等温压缩试验.结果表明:在较高变形温度或者较低应变速率时,AZ80A镁合金更易发生动态再结晶;根据热模拟试验所得的流动应力曲线确定了AZ80A镁合金的动态再结晶临界条件,并通过动力学分析并建立了该合金的动态再结晶模型,可为该合金组织模拟技术提供理论依据.  相似文献   

10.
本文采用热压缩试验获得了铸态AZ31B镁合金高温变形时的流变曲线,分析了变形温度和应变速率对流动应力的影响。结果表明:峰值应变随着应变速率增加和温度减小而增大,减小应变速率、适当提高变形温度对材料的动态回复和再结晶是有利的。利用多元回归分析建立了流动应力预测模型,该模型可以描述流动应力的应变敏感性,经验证发现使用其预测流动应力具有较高精度,相关系数高达0.9926,能较好地描述铸态AZ31B镁合金在热变形过程的流动行为。  相似文献   

11.
在单向压缩热模拟试验机上对AZ31-1Sm合金在变形温度为300~450℃、应变速率为0.01~1 s-1条件下的热变形行为和微观组织进行研究。结果表明:AZ31-1Sm镁合金在热压缩变形时,流变应力随着应变速率的增大和变形温度的降低而增大;该合金的热压缩流变应力行为可用双曲正弦形式的本构方程来描述,在本实验条件下,AZ31-1Sm镁合金热热变形激活能Q为160.8 k J/mol。AZ31-1Sm易发生动态再结晶,在高变形温度和低应变速率条件下动态再结晶趋势明显,动态再结晶晶粒尺寸随着变形温度的增加和应变速率的降低而增大。  相似文献   

12.
在变形温度为250~450℃、应变速率为0.005~5 s-1的条件下,采用热模拟压缩实验得到流动应力-应变曲线,研究了挤压态镁合金热变形和动态再结晶行为.结果表明:AZ31镁合金发生动态再结晶的临界应变随着变形温度的升高或应变速率的减小而降低;镁合金变形初期发生动态再结晶所需要的激活能为191.2 kJ·mol-1....  相似文献   

13.
在单向压缩热模拟试验机上对AZ31-1Sm合金在变形温度为300~450℃、应变速率为0.01~1 s-1条件下的热变形行为和微观组织进行研究。结果表明:AZ31-1Sm镁合金在热压缩变形时,流变应力随着应变速率的增大和变形温度的降低而增大;该合金的热压缩流变应力行为可用双曲正弦形式的本构方程来描述,在本实验条件下,AZ31-1Sm镁合金热热变形激活能Q为160.8 k J/mol。AZ31-1Sm易发生动态再结晶,在高变形温度和低应变速率条件下动态再结晶趋势明显,动态再结晶晶粒尺寸随着变形温度的增加和应变速率的降低而增大。  相似文献   

14.
《热处理》2017,(5)
使用Gleeble-1500型热模拟试验机对经420℃×12 h固溶处理的AZ91镁合金进行了单向热模拟压缩试验,建立并分析了变形温度为200~425℃、应变速率为0.01~10 s~(-1)条件下的热加工图。结果表明,AZ91镁合金适合于在低应变速率、高变形温度条件下进行加工。变形温度的升高和应变速率的降低有利于动态再结晶的形核。适合于AZ91镁合金的热加工工艺参数为温度573~675K,应变速率0.01~0.1 s~(-1),可为制定AZ91镁合金的热加工工艺提供理论依据。  相似文献   

15.
采用圆柱体等温热压缩试验对AZ80镁合金的变形行为进行研究。结果表明,当变形温度为200~350℃,应变速率为0.002~1s-1,随着应变速率的增加和变形温度的降低,合金的流变应力增加;通过线形回归获得了AZ80镁合金高温条件下的流变应力本构方程,发现应变速率敏感指数m随着温度的升高呈上升趋势;同时采用力学方法直接从流变曲线确定了AZ80镁合金发生动态再结晶的临界应变量,并回归出临界应变量与Zenner-Hollmon参数的关系式。  相似文献   

16.
在Gleeble-1500D热模拟机上对AZ40M镁合金进行了热压缩实验。实验的变形温度为250~400℃,变形速率为0.001~1s-1。由实验数据建立了AZ40M镁合金在热变形过程中的再结晶动力学模型,并分析了AZ40M在不同变形条件下动态再结晶分数。以方形孔轴类零件挤压成形为例,对它的成形过程进行了数值模拟,比较了成形后再结晶分数的分布。结果表明:当提高变形温度或降低变形速率时,材料的动态再结晶区域明显增加且在同一部位材料的动态再结晶分数也明显增大。  相似文献   

17.
基于AZ80镁合金高温热压缩成形试验,对合金热变形本构模型及动态再结晶行为进行了研究。采用双曲正弦模型回归分析变形温度和应变速率对AZ80镁合金热变形流动应力的影响,建立了AZ80合金高温塑性变形的本构模型;定量分析了镁合金发生动态再结晶的临界条件与变形参数之间的函数关系,基于Avrami方程建立了AZ80镁合金动态再结晶动力学模型。  相似文献   

18.
采用等温压缩实验获得了变形温度为200~400℃,应变速率为0.001~1 s-1的AZ80镁合金的流变应力曲线,考虑动态硬化及软化特性描述了AZ80镁合金热变形过程动态再结晶主导的软化行为.提出基于动态材料模型的应变速率敏感性指数表征动态再结晶引起的能量耗散,该指数通过引入动态再结晶体积分数描述微观组织演化的耗散功.考虑变形温度和应变速率构建了不同应变的应变速率敏感性指数图,实现应变速率敏感性指数对动态再结晶软化行为的量化表征.在此基础上,研究了变形温度、应变速率对动态再结晶临界条件及演化过程的影响,重点分析了不同应变的应变速率敏感性指数图特征.结果表明:随着变形温度的升高和应变速率的降低,动态再结晶软化临界应变减小,动态再结晶体积分数增加;应变速率敏感性指数与动态再结晶体积分数正相关,指数大于0.21的区域对应着高动态再结晶体积分数,且均位于低应变速率下,并通过动态再结晶软化的微观组织进行了验证.  相似文献   

19.
利用固相再生技术回收利用AZ91D镁合金屑,具体工艺为先冷压再热挤。结果表明:制备的AZ91D镁合金具有较好的力学性能且晶粒明显细化。在热挤出过程中发生了动态再结晶,且动态再结晶组织受到热挤温度和应变速率的影响,在300-350 °C下基面滑移和孪晶协调变形导致动态再结晶晶粒产生,形成"项链"组织;在 350-400 °C下位错的交滑移控制动态再结晶形核;高于400 °C时位错攀移控制了整个动态再结晶过程,形成均匀的再结晶组织。随着应变速率增加AZ91D镁合金力学性能增大,改善了材料的力学性能,但应变速率过大,制备试样表面出现裂纹,影响材料的力学性能。  相似文献   

20.
采用Gleeble-3500热模拟试验机,在变形温度300℃~420℃、应变速率0.000 5 s-1~0.5 s-1的变形条件下,对铸态AZ80+0.4Ce镁合金进行热压缩试验。试验研究了该合金的高温流动应力变化规律,采用金相显微镜分析了温度、应变速率对微观组织的影响。结果表明:铸态AZ80+0.4Ce镁合金的高温流动应力-应变曲线主要以动态再结晶软化机制为特征,增加变形温度和降低应变速率都会降低材料的流动应力;热压缩温度越高,动态再结晶进行越充分,应变速率越大,动态再结晶晶粒越细。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号