首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ER stress and the unfolded protein response   总被引:29,自引:0,他引:29  
Conformational diseases are caused by mutations altering the folding pathway or final conformation of a protein. Many conformational diseases are caused by mutations in secretory proteins and reach from metabolic diseases, e.g. diabetes, to developmental and neurological diseases, e.g. Alzheimer's disease. Expression of mutant proteins disrupts protein folding in the endoplasmic reticulum (ER), causes ER stress, and activates a signaling network called the unfolded protein response (UPR). The UPR increases the biosynthetic capacity of the secretory pathway through upregulation of ER chaperone and foldase expression. In addition, the UPR decreases the biosynthetic burden of the secretory pathway by downregulating expression of genes encoding secreted proteins. Here we review our current understanding of how an unfolded protein signal is generated, sensed, transmitted across the ER membrane, and how downstream events in this stress response are regulated. We propose a model in which the activity of UPR signaling pathways reflects the biosynthetic activity of the ER. We summarize data that shows that this information is integrated into control of cellular events, which were previously not considered to be under control of ER signaling pathways, e.g. execution of differentiation and starvation programs.  相似文献   

2.
Human corneal endothelial cells (HCEC) have become increasingly important for a range of eye disease treatment therapies. Accordingly, a more detailed understanding of the processing and preservation associated stresses experienced by corneal cells might contribute to improved therapeutic outcomes. To this end, the unfolded protein response (UPR) pathway was investigated as a potential mediator of corneal cell death in response to hypothermic storage. Once preservation-induced failure had begun in HCECs stored at 4 °C, it was noted that necrosis accounted for the majority of cell death but with significant apoptotic involvement, peaking at several hours post-storage (4–8 h). Western blot analysis demonstrated changes associated with apoptotic activation (caspase 9, caspase 3, and PARP cleavage). Further, the activation of the UPR pathway was observed through increased and sustained levels of ER folding and chaperone proteins (Bip, PDI, and ERO1-Lα) in samples experiencing significant cell death. Modulation of the UPR pathway using the specific inhibitor, salubrinal, resulted in a 2-fold increase in cell survival in samples experiencing profound cold-induced failure. Furthermore, this increased cell survival was associated with increased membrane integrity, cell attachment, and decreased necrotic cell death populations. Conversely, addition of the UPR inducer, tunicamycin, during cold exposure resulted in a significant decrease in HCEC survival during the recovery period. These data implicate for the first time that this novel cell stress pathway may be activated in HCEC as a result of the complex stresses associated with hypothermic exposure. The data suggest that the targeted control of the UPR pathway during both processing and preservation protocols may improve cell survival and function of HCEC thus improving the clinical utility of these cells as well as whole human corneas.  相似文献   

3.
The unfolded protein response   总被引:5,自引:0,他引:5  
The unfolded protein response (UPR) is a signal transduction network activated by inhibition of protein folding in the endoplasmic reticulum (ER). The UPR coordinates adaptive responses to this stress situation, including induction of ER resident molecular chaperone and protein foldase expression to increase the protein folding capacity of the ER, induction of phospholipid synthesis, attenuation of general translation, and upregulation of ER-associated degradation to decrease the unfolded protein load of the ER, and an antioxidant response. Upon severe or prolonged ER stress the UPR induces apoptosis to eliminate unhealthy cells from an organism or a population. In this review, I will summarize our current knowledge about signal transduction pathways involved in transducing the unfolded protein signal from the ER to the nucleus or the cytosol.  相似文献   

4.
5.
Mitochondria are the main oxygen consumers in cells and as such are the primary organelle affected by hypoxia. All hypoxia pathology presumably derives from the initial mitochondrial dysfunction. An early event in hypoxic pathology in C. elegans is disruption of mitochondrial proteostasis with induction of the mitochondrial unfolded protein response (UPRmt) and mitochondrial protein aggregation. Here in C. elegans, we screen through RNAis and mutants that confer either strong resistance to hypoxic cell death or strong induction of the UPRmt to determine the relationship between hypoxic cell death, UPRmt activation, and hypoxia-induced mitochondrial protein aggregation (HIMPA). We find that resistance to hypoxic cell death invariantly mitigated HIMPA. We also find that UPRmt activation invariantly mitigated HIMPA. However, UPRmt activation was neither necessary nor sufficient for resistance to hypoxic death and vice versa. We conclude that UPRmt is not necessarily hypoxia protective against cell death but does protect from mitochondrial protein aggregation, one of the early hypoxic pathologies in C. elegans.Subject terms: Necroptosis, Energy metabolism  相似文献   

6.
In Wolfram syndrome, a rare form of juvenile diabetes, pancreatic beta-cell death is not accompanied by an autoimmune response. Although it has been reported that mutations in the WFS1 gene are responsible for the development of this syndrome, the precise molecular mechanisms underlying beta-cell death caused by the WFS1 mutations remain unknown. Here we report that WFS1 is a novel component of the unfolded protein response and has an important function in maintaining homeostasis of the endoplasmic reticulum (ER) in pancreatic beta-cells. WFS1 encodes a transmembrane glyco-protein in the ER. WFS1 mRNA and protein are induced by ER stress. The expression of WFS1 is regulated by inositol requiring 1 and PKR-like ER kinase, central regulators of the unfolded protein response. WFS1 is normally up-regulated during insulin secretion, whereas inactivation of WFS1 in beta-cells causes ER stress and beta-cell dysfunction. These results indicate that the pathogenesis of Wolfram syndrome involves chronic ER stress in pancreatic beta-cells caused by the loss of function of WFS1.  相似文献   

7.
8.
RNA ligation can regulate RNA function by altering RNA sequence, structure and coding potential. For example, the function of XBP1 in mediating the unfolded protein response requires RNA ligation, as does the maturation of some tRNAs. Here, we describe a novel in vivo model in Caenorhabditis elegans for the conserved RNA ligase RtcB and show that RtcB ligates the xbp‐1 mRNA during the IRE‐1 branch of the unfolded protein response. Without RtcB, protein stress results in the accumulation of unligated xbp‐1 mRNA fragments, defects in the unfolded protein response, and decreased lifespan. RtcB also ligates endogenous pre‐tRNA halves, and RtcB mutants have defects in growth and lifespan that can be bypassed by expression of pre‐spliced tRNAs. In addition, animals that lack RtcB have defects that are independent of tRNA maturation and the unfolded protein response. Thus, RNA ligation by RtcB is required for the function of multiple endogenous target RNAs including both xbp‐1 and tRNAs. RtcB is uniquely capable of performing these ligation functions, and RNA ligation by RtcB mediates multiple essential processes in vivo.  相似文献   

9.
Ischemic injuries permanently affect kidney tissue and challenge cell viability, promoting inflammation and fibrogenesis. Ischemia results in nutrient deprivation, which triggers endoplasmic reticulum stress, ultimately resulting in the unfolded protein response (UPR). The aim of this study was to test whether the UPR could promote an angiogenic response independently of the HIF-1α pathway during ischemic stress in the human kidney epithelium. Glucose deprivation induced the secretion of vascular endothelial growth factor A (VEGFA), basic fibroblast growth factor (bFGF) and angiogenin (ANG) in human kidney epithelial cells independently of HIF-1α. Glucose deprivation, but not hypoxia, triggered endoplasmic reticulum stress and activated the UPR. RNA interference-mediated inhibition of the gene encoding the kinase PERK decreased VEGFA and bFGF expression, but neither gene was affected by the inhibition of IRE1α or ATF6. Furthermore, we show that the expression of angiogenin, which inhibits protein synthesis, is regulated by both IRE1α and PERK, which could constitute a complementary function of the UPR in the repression of translation. In a rat model of acute ischemic stress, we show that the UPR is activated in parallel with VEGFA, bFGF, and ANG expression and independently of HIF-1α.  相似文献   

10.
The specific posttranslational modification of protein cysteine residues by the addition of the tripeptide glutathione is termed S-glutathionylation. This process is promoted by oxidative and nitrosative stress but also occurs in unstressed cells. Altered levels of S-glutathionylation in some proteins have been associated with numerous pathologies, many of which have been linked to redox stress in the endoplasmic reticulum (ER). Proper protein folding is dependent upon controlled redox conditions within the ER, and it seems that ER conditions can in turn affect rates of S-glutathionylation. This article seeks to bring together the ways through which these processes are interrelated and considers the implications of these interrelationships upon therapeutic approaches to disease.  相似文献   

11.
The unfolded protein response (UPR) pathway helps cells cope with endoplasmic reticulum (ER) stress by activating genes that increase the ER's functional capabilities. We have identified a novel role for the UPR pathway in facilitating budding yeast cytokinesis. Although other cell cycle events are unaffected by conditions that disrupt ER function, cytokinesis is sensitive to these conditions. Moreover, efficient cytokinesis requires the UPR pathway even during unstressed growth conditions. UPR-deficient cells are defective in cytokinesis, and cytokinesis mutants activate the UPR. The UPR likely achieves its role in cytokinesis by sensing small changes in ER load and making according changes in ER capacity. We propose that cytokinesis is one of many cellular events that require a subtle increase in ER function and that the UPR pathway has a previously uncharacterized housekeeping role in maintaining ER plasticity during normal cell growth.  相似文献   

12.
To cope with the accumulation of unfolded or misfolded proteins the endoplasmic reticulum (ER) has evolved specific signalling pathways collectively called the unfolded protein response (UPR). Elucidation of the mechanisms governing ER stress signalling has linked this response to the regulation of diverse physiologic processes as well as to the progression of a number of diseases. Interest in hereditary haemochromatosis (HH) has focused on the study of proteins implicated in iron homeostasis and on the identification of new alleles related with the disease. HFE has been amongst the preferred targets of interest, since the discovery that its C282Y mutation was associated with HH. However, the discrepancies between the disease penetrance and the frequency of this mutation have raised the possibility that its contribution to disease progression might go beyond the mere involvement in regulation of cellular iron uptake. Recent findings revealed that activation of the UPR is a feature of HH and that this stress response may be involved in the genesis of immunological anomalies associated with the disease. This review addresses the connection of the UPR with HH, including its role in MHC-I antigen presentation pathway and possible implications for new clinical approaches to HH.  相似文献   

13.
14.
Human heart failure is characterized by arrhythmogenic electrical remodeling consisting mostly of ion channel downregulations. Reversing these downregulations is a logical approach to antiarrhythmic therapy, but understanding the pathophysiological mechanisms of the reduced currents is crucial for finding the proper treatments. The unfolded protein response (UPR) is activated by endoplasmic reticulum (ER) stress and has been found to play pivotal roles in different diseases including neurodegenerative diseases, diabetes mellitus, and heart disease. Recently, the UPR is reported to regulate multiple cardiac ion channels, contributing to arrhythmias in heart disease. In this review, we will discuss which UPR modulators and effectors could be involved in regulation of cardiac ion channels in heart disease, and how the understanding of these regulating mechanisms may lead to new antiarrhythmic therapeutics that lack the proarrhythmic risk of current ion channel blocking therapies.  相似文献   

15.
16.
The unfolded protein response (UPR) is an adaptive cellular response that aims to relieve endoplasmic reticulum (ER) stress via several mechanisms, including inhibition of protein synthesis and enhancement of protein folding and degradation. There is a controversy over the effect of the UPR on ER protein export. While some investigators suggested that ER export is inhibited during ER stress, others suggested the opposite. In this article, their conflicting studies are analyzed and compared in attempt to solve this controversy. The UPR appears indeed to enhance ER export, possibly via multiple mechanisms. However, another factor, which is the integrity of the folding machinery/environment inside ER, determines whether ER export will appear increased or decreased during experimentation. Also, different methods of stress induction appear to have different effects on ER export. Thus, improvement of ER export may represent a new mechanism by which the UPR alleviates ER stress. This may help researchers to understand how the UPR works inside cells and how to manipulate it to alter cell fate during stress, either to promote cell survival or death. This may open up new approaches for the treatment of ER stress-related diseases.  相似文献   

17.
Accumulation of unfolded protein or misfolded protein causes endoplasmic reticulum (ER) stress. Increased salt concentration activates a stress response pathway in the ER in Arabidopsis thaliana to induce the expression of several salt stress response genes, leading to a more optimal protein folding environment in the ER. In addition, some salt stress-regulated proteins require zinc for their activity, including some zinc-dependent DNA binding proteins and zinc-finger proteins. In a recent study, we reported that ZTP29, a putative zinc transporter at the ER membrane, is involved in the response to salt stress through regulation of zinc level in the ER to induce the UPR pathway. In this addendum, we propose a testable hypothesis for the role of ZTP29 in the response to salt stress via the regulation of zinc levels in the ER.Key words: zinc, ER stress, unfolded protein response, salt stress, arabidopsisHigh salinity is a common abiotic stress that adversely affects plant growth and crop production.1 Plants must sense the stress and transduce stress signals to activate response pathways leading to adaptation to, or tolerance of, the abiotic stress in salt environment.2 Salt stress activates a stress response pathway in the endoplasmic reticulum (ER) in Arabidopsis thaliana, indicating that the adaptation of plants to salt stress involves ER stress signal regulation.3,4 There is limited understanding of molecular mechanisms on ER stress in plants, as compared to yeast and mammalian cells. bZIP60, bZIP28, bZIP17 are three membrane-associated basic domain/leucine zipper (bZIP) factors, which have been reported as candidates for ER-folding proteins in plants.57 BiP acts as a general chaperone in the ER lumen, due to its ability to discriminate between properly folded and unfolded protein structures.8 Unfolded or misfolded proteins are retained in the ER and form stable complexes with BiP and other ER resident chaperones.9 Zinc deficiency induces unfolded protein response (UPR) in most eukaryotes.10 Zinc is an important trace element, which participates in physiological and biochemical process in vivo. The requirement of zinc for proper ER function is evolutionarily conserved.  相似文献   

18.
19.
The endoplasmic reticulum and the unfolded protein response   总被引:2,自引:0,他引:2  
The endoplasmic reticulum (ER) is the site where proteins enter the secretory pathway. Proteins are translocated into the ER lumen in an unfolded state and require protein chaperones and catalysts of protein folding to attain their final appropriate conformation. A sensitive surveillance mechanism exists to prevent misfolded proteins from transiting the secretory pathway and ensures that persistently misfolded proteins are directed towards a degradative pathway. In addition, those processes that prevent accumulation of unfolded proteins in the ER lumen are highly regulated by an intracellular signaling pathway known as the unfolded protein response (UPR). The UPR provides a mechanism by which cells can rapidly adapt to alterations in client protein-folding load in the ER lumen by expanding the capacity for protein folding. In addition, a variety of insults that disrupt protein folding in the ER lumen also activate the UPR. These include changes in intralumenal calcium, altered glycosylation, nutrient deprivation, pathogen infection, expression of folding-defective proteins, and changes in redox status. Persistent protein misfolding initiates apoptotic cascades that are now known to play fundamental roles in the pathogenesis of multiple human diseases including diabetes, atherosclerosis and neurodegenerative diseases.  相似文献   

20.
未折叠蛋白反应的信号转导   总被引:6,自引:0,他引:6  
李明  丁健  缪泽鸿 《生命科学》2008,20(2):246-252
在内质网中,分泌性蛋白、跨膜蛋白和内质网驻留蛋白折叠成天然构象,经过修饰后,形成有活性的功能性蛋白质。如果蛋白质在内质网内的折叠受到抑制,造成未折叠蛋白聚集,将引起内质网应激。激活未折叠蛋白反应(unfolded protein response,UPR),使蛋白质的生物合成减少,内质网的降解功能增强,从而降低内质网负担,维持细胞内的稳态。如果内质网应激持续存在,则可能诱发细胞凋亡。研究表明,未折叠蛋白反应能在多种肿瘤细胞中发生,并能促进肿瘤细胞的生长。本文对未折叠蛋白反应与肿瘤研究的最新进展进行综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号