首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
A novel electrochemiluminescence (ECL) detector is presented in this article. The detector is applied for micellar electrokinetic chromatographic separation of dichlorotris(2,2'-bipyridyl)ruthenium(II) hydrate [Ru-(bpy)] and dichlorotris(1,10-phenanthroline)ruthenium-(II) hydrate [Ru(phen)] on a microfabricated glass device. It consists of a microfabricated "U"-shape floating platinum electrode placed across the separation channel. The legs of the U function respectively as working and counter electrode. The required potential difference for the ECL reaction is generated at the Pt electrode by the electric field available in the separation channel during electrophoretic separation. Initial experiments demonstrate a micellar electrokinetic separation and direct ECL detection of 10(-16) mol of Ru(phen) (10(-6) M) and 4.5 x 10(-16) mol of Ru(bpy) (5 x 10(-6) M). Also, preliminary results show the indirect detection of three amino acids. The high voltage at the location of detection does not interfere with the electrochemistry.  相似文献   

2.
Sun X  Du Y  Dong S  Wang E 《Analytical chemistry》2005,77(24):8166-8169
A novel method for effective immobilization of Ru(bpy)3(2+) on an electrode surface is developed. The whole process involves two steps: the electrostatic interactions between citrate-capped gold nanoparticles (AuNPs) and Ru(bpy)3Cl2 in aqueous medium were used to fabricate Ru(bpy)(3)2+-AuNP aggregates (Ru-AuNPs) first, and then the Au-S interactions between as-formed Ru-AuNPs and sulfhydryl groups were used to effectively immobilize the Ru-AuNPs on a sulfhydryl-derivated indium tin oxide (ITO) electrode surface. As-prepared ITO electrode shows excellent stability, and the ECL active species Ru(bpy)3(2+) contained therein exhibit excellent ECL behaviors.  相似文献   

3.
An interface of gold nanoshells (GNSs) was constructed on the surface of the 3-aminopropyl triethoxysilane (APTES) modified ITO glass substrates by a simple self-assemble method to form the GNSs-coated ITO electrode. UV-vis spectroscopy, scanning electron microscopy (SEM), and cyclic voltammetry were used to characterize the GNSs interface architectures. SEM and UV-vis spectroscopy showed that an interconnected and stable GNSs interface was formed on the APTES modified ITO glass substrate. The cytochrome b562 (Cyt b562) was selected to observe electron transfer reactions of redox protein at the GNSs-coated ITO electrodes. Quasi-reversible electrochemistry of Cyt b562 was obtained and its electrochemical behaviors were discussed.  相似文献   

4.
Zu Y  Bard AJ 《Analytical chemistry》2001,73(16):3960-3964
We describe the effect of electrode surface hydrophobicity on the electrochemical behavior and electrogenerated chemiluminescence (ECL) of Ru(bpy)3(2+) (bpy = 2,2'-bipyridyl)/tripropylamine (TPrA) system. Gold and platinum electrodes were modified with different thiol monolayers. The hydrophobicity of the electrode surfaces changed with different terminal groups of the thiol molecules. The oxidation rate of TPrA was found to be much larger at the modified electrode with a more hydrophobic surface. The adsorption of neutral TPrA species on this kind of surface was assumed to contribute to the faster anodic kinetics. Due to the rapid generation of the highly reducing radical, TPrA., ECL intensity increased significantly at more hydrophobic electrodes. This electrode surface effect in the ECL analytical system allows one to improve the detection sensitivity at low concentrations of Ru(bpy)3(2+). The surfactant effect on the ECL process was also examined and discussed based on the change of electrode hydrophobicity by the adsorption of surfactant species.  相似文献   

5.
合成了含芘基的新型钌(Ⅱ)配合物Ru-1,用1H-NMR和MS表征了这种配合物的分子结构。TG-DSC测试结果表明,Ru-1在一个较宽的温度范围内具有良好的热稳定性。在HOPG、石墨烯基电极表面组装了钌配合物分子膜,并对其进行了AFM、电化学及紫外可见吸收光谱等光电化学分析。结果表明,自组装膜的生长是均匀的,膜材料具有可逆的氧化还原过程,在0.47 V出现可逆的氧化还原峰。紫外可见吸收光谱表明,这种膜材料在较宽的紫外可见区表现出强且宽的吸收峰。钌配合物对石墨烯、HOPG炭素电极的修饰,使这类炭素电极具有良好的光电性能和稳定性。  相似文献   

6.
Qiu H  Yan J  Sun X  Liu J  Cao W  Yang X  Wang E 《Analytical chemistry》2003,75(20):5435-5440
This paper describes an indium tin oxide (ITO) electrode-based Ru(bpy)3(2+) electrochemiluminecence (ECL) detector for a microchip capillary electrophoresis (CE). The microchip CE-ECL system described in this article consists of a poly(dimethylsiloxane) (PDMS) layer containing separation and injection channels and an electrode plate with an ITO electrode fabricated by a photolithographic method. The PDMS layer was reversibly bound to the ITO electrode plate, which greatly simplified the alignment of the separation channel with the working electrode and enhanced the photon-capturing efficiency. In our study, the high separation electric field had no significant influence on the ECL detector, and decouplers for isolating the separation electric field were not needed in the microchip CE-ECL system. The ITO electrodes employed in the experiments displayed good durability and stability in the analytical procedures. Proline was selected to perform the microchip device with a limit of detection of 1.2 microM (S/N = 3) and a linear range from 5 to 600 microM.  相似文献   

7.
本文通过阴极恒电位方法在ITO电极上修饰SnS薄膜,优化了镀膜条件并对修饰电极通过SEM、电化学等性能进行了表征。研究了鲁米诺在SnS/ITO修饰电极上的ECL行为,研究发现SnS的存在可以促进ECL的增强,ECL的强度同鲁米诺的浓度成正比,鲁米诺的最低检测限可达到3.9×10-11 mol/L。另外,基于超氧化物歧化酶(SOD酶)可以抑制鲁米诺的电致化学发光的原理,利用该修饰电极建立了一种SOD测定ECL方法,测定的线性范围为2.4×105U/L~2.16×106 U/L,最低检测限为1.5×106 U/L。  相似文献   

8.
Zu Y  Bard AJ 《Analytical chemistry》2000,72(14):3223-3232
We describe the electrogenerated chemiluminescence (ECL) processes of the Ru(bpy)3(2+) (bpy = 2,2'-bipyridyl)/ tripropylamine (TPrA) system at glassy carbon, platinum, and gold electrodes. The electrochemical behavior of TPrA on different electrode materials and its influence on the ECL process are demonstrated. At glassy carbon electrodes, the direct oxidation of TPrA began at approximately 0.6 V vs SCE and exhibited a broad irreversible anodic peak. Two ECL waves were observed, one in the potential region more negative than 1.0 V vs SCE and one at more positive potentials. The first ECL process apparently occurs without the electrogeneration of Ru(bpy)3(3+), in contrast to that of the second ECL wave. At Pt and Au electrodes, however, the formation of surface oxides significantly blocked the direct oxidation of TPrA. An ECL wave below 1.0 V did not appear at Pt and was very weak at gold. The ECL peaks at potentials of 1.1-1.2 V were also much weaker than those observed at the glassy carbon electrode. These results showed that the direct oxidation of TPrA played an important role in the ECL processes. Therefore, the enhancement of the TPrA oxidation current might lead to an increase in the ECL intensity. Small amounts of halide species were found to inhibit the growth of surface oxides on Pt and gold electrodes and led to an obvious increase of TPrA oxidation current. The anodic dissolution of gold in halide-containing solution was also important in activating the gold electrode surface. The electrochemical catalytic effect of bromide further promoted the oxidation of TPrA. A halide effect on ECL at Pt and Au electrodes was also evident. The most effective enhancement of ECL was observed at Au electrode in a bromide-containing solution. This effect was also found in an commercial flow-through instrument (IGEN) and provided a simple way to improve the detection sensitivity at low concentrations of Ru(bpy)3(2+).  相似文献   

9.
The electrochemistry and electrogenerated chemiluminescence (ECL) of a series of europium chelates, cryptates, and mixed-ligand chelate/cryptand complexes were studied. The complexes were of the following general forms: EuL(4)(-), where L = β-diketonate, a bis-chelating ligand (such as dibenzoylmethide), added as salts (A)EuL(4), where A = tetrabutylammonium ion or piperidinium ion (pipH(+)); Eu(crypt)(3+), where crypt = a cryptand ligand, e.g., 4,7,13,16,21-pentaoxa-1,10-diazabicyclo[8,8,5]tricosane; and Eu(crypt)(L)(2+) for the mixed-ligand systems. ECL was obtained for the chelates and mixed-ligand systems by reducing the complexes at a Pt electrode in the presence of peroxydisulfate in acetonitrile solutions and was attributed to the electron-transfer reaction between the reduced bound ligands and SO(4)(?)(-), followed by intramolecular excitation transfer from the excited ligand orbitals to the metal-centered 4f states. No ECL was observed under the same conditions for the europium complexes incorporating only the cryptand ligands in aqueous solution. The ECL spectra matched the photoluminescence spectra with a narrow emission band observed at 612 nm, corresponding to a metal-centered 4f-4f transition. The ECL efficiencies for the ECL-active species were low, about 10(-)(1)-10(-)(4)% of that of the Ru(bpy)(3)(2+)/S(2)O(8)(2)(-) system under similar conditions.  相似文献   

10.
The electrochemiluminescence (ECL) of Os(phen)2(dppene)2+ (phen = 1,10-phenanthroline and dppene = bis(diphenylphosphino)ethene) is reported in mixed CH3CN/H2O (50:50 v/v) and aqueous (0.1 M KH2PO4) solutions with tri-n-propylamine (TPrA) as an oxidative-reductive coreactant. ECL efficiencies (phi(ecl) = photons emitted/redox event) of 2.0 in aqueous, and 0.95 in mixed for Os(phen)2(dppene)2+ were obtained using Ru(bpy)3(2+) (bpy = 2,2'-bipyridine) as a relative standard (phi(ecl) = 1). Photoluminescence (PL) efficiencies of 0.094 and 0.053 were obtained in aqueous and mixed solutions, respectively, as compared to Ru(bpy)3(2+) (phi(em) = 0.042). The ECL spectra were identical to photoluminescence spectra (lambda(max) approximately 584 nm), indicating formation of the same metal-to-ligand (MLCT) excited states in both ECL and PL. The ECL is linear over several orders of magnitude in aqueous and mixed solution, with theoretical detection limits (blank plus three times the standard deviation of the noise) of 16.9 nM in H2O and 0.29 nM in CH3CN/H2O (50:50 v/v).  相似文献   

11.
Electrochemiluminescence (ECL) cell using the electrode of TiO2 nanotube (NT) and Ru(ll) complex Ru(bpy)3(PF6)2 as a luminacence substance was fabricated. TiO2 NT were produced from the membrane of TiO2 NT arrays fabricated by anodic oxidation of approximately 100 microm thick Ti-plate. TiO2 NT arrays inject increasing number of electrons to the Ru(II) complex at the interface of TiO2 NTs. It allows the increasing exergonic oxidation/reduction reaction of Ru(II) complex. The ECL cell emits approximately 600 nm light in orange color. The cell structure is composed of a glass/F-doped SnO2(FTO)/TiO2 NT/Ru(II) complex in propylene carbonate/FTO/glass. The ECL efficiency of the cell consisting of the layer of TiO2 NT was approximately 255 cd/m2 at a bias of 4 V. The use of TiO2 NT increases ECL intensities by 5 times compared to the typical ECL cell without the use of TiO2 NT.  相似文献   

12.
Miao W  Bard AJ 《Analytical chemistry》2003,75(21):5825-5834
Anodic electrogenerated chemiluminescence (ECL) with tri-n-propylamine (TPrA) as a coreactant was used to determine DNA and C-reactive protein (CRP) by immobilizations on Au(111) electrodes using tris(2,2'-bipyridyl)ruthenium(II) (Ru(bpy)(3)(2+)) labels. A 23-mer synthetic single-stranded (ss) DNA derived from the Bacillus anthracis with an amino-modified group at the 5' end position was covalently attached to the Au(111) substrate precoated with a self-assembled thiol monolayer of 3-mercaptopropanoic acid (3-MPA) in the presence of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDAC) and then hybridized with a target ssDNA tagged with Ru(bpy)(3)(2+) ECL labels. Similarly, biotinylated anti-CRP species were immobilized effectively onto the Au(111) substrate precovered with a layer of avidin linked covalently via the reaction between avidin and a mixed thiol monolayer of 3-MPA and 16-mercaptohexadecanoic acid on Au(111) in the presence of EDAC and N-hydroxysuccinimide. CRP and anti-CRP tagged with Ru(bpy)(3)(2+) labels were then conjugated to the surface layer. ECL responses were generated from the modified electrodes described above by immersing them in a TPrA-containing electrolyte solution. A series of electrode treatments, including blocking free -COOH groups with ethanol amine, pinhole blocking with bovine serum albumin, washing with EDTA/NaCl/Tris buffer, and spraying with inert gases, were used to reduce the nonspecific adsorption of the labeled species. The ECL peak intensity was linearly proportional to the analyte CRP concentration over the range 1-24 microg/mL. CRP concentrations of two unknown human plasma/serum specimens were measured by the standard addition method based on this technique.  相似文献   

13.
Liu X  Jiang H  Lei J  Ju H 《Analytical chemistry》2007,79(21):8055-8060
This work reported for the first time the anodic electrochemiluminescence (ECL) of CdTe quantum dots (QDs) in aqueous system and its analytical application based on the ECL energy transfer to analytes. The CdTe QDs were modified with mercaptopropionic acid to obtain water-soluble QDs and stable and intensive anodic ECL emission with a peak value at +1.17 V (vs Ag/AgCl) in pH 9.3 PBS at an indium tin oxide (ITO) electrode. The ECL emission was demonstrated to involve the participation of superoxide ion produced at the ITO surface, which could inject an electron into the 1Se quantum-confined orbital of CdTe to form QDs anions. The collision between these anions and the oxidation products of QDs led to the formation of the excited state of QDs and ECL emission. The ECL energy transfer from the excited CdTe QDs to quencher produced a novel methodology for detection of catechol derivatives. Using dopamine and L-adrenalin as model analytes, this ECL method showed wide linear ranges from 50 nM to 5 microM and 80 nM to 30 microM for these species. Both ascorbic acid and uric acid, which are common interferences, did not interfere with the detection of catechol derivatives in practical biological samples.  相似文献   

14.
本文设计了一种基于脱氧核酶(DNAzyme)检测Pb2+的电致化学发光(Electrocheluminescent,ECL)传感器。将对Pb2+特异性识别的DNAzyme通过金-巯键固定于金电极表面,并与标记有二氧化硅包埋的钌联吡啶(Ru-SNPs)的底物DNA链发生杂交,形成双链DNA(ds-DNA)传感器。Pb2+不存在时,由于Ru-SNPs靠近电极表面,产生强的ECL信号。当Pb2+存在时,DNAzyme催化底物链断裂,Ru-SNPs远离电极表面,导致ECL信号下降。实验结果表明ECL强度与Pb2+浓度在0.2-1.0 nmol/L范围内呈良好的线性关系,检测限可达0.04 nmol/L,其他二价金属离子对其基本无干扰。  相似文献   

15.
Guo Z  Dong S 《Analytical chemistry》2004,76(10):2683-2688
The electrochemistry and electrogenerated chemiluminescence (ECL) of ruthenium(II) tris(bipyridine) (Ru(bpy)(3)(2+)) ion-exchanged in carbon nanotube (CNT)/Nafion composite films were investigated with tripropylamine (TPA) as a coreactant at a glassy carbon (GC) electrode. The major goal of this work was to investigate and develop new materials and immobilization approaches for the fabrication of ECL-based sensors with improved sensitivity, reactivity, and long-term stability. Ru(bpy)(3)(2+) could be strongly incorporated into Nafion film, but the rate of charge transfer was relative slow and its stability was also problematic. The interfusion of CNT in Nafion resulted in a high peak current of Ru(bpy)(3)(2+) and high ECL intensity. The results indicated that the composite film had more open structures and a larger surface area allowing faster diffusion of Ru(bpy)(3)(2+) and that the CNT could adsorb Ru(bpy)(3)(2+) and also acted as conducting pathways to connect Ru(bpy)(3)(2+) sites to the electrode. In the present work, the sensitivity of the ECL system at the CNT/Nafion film-modified electrodes was more than 2 orders of magnitude higher than that observed at a silica/Nafion composite film-modified electrode and 3 orders of magnitude higher than that at pure Nafion films. The CNT/Nafion composite film-modified GC electrodes also exhibited long-term stability.  相似文献   

16.
王宇峰  宋娟  关建宁  李鑫  仲慧 《材料导报》2011,25(5):51-54,63
固定联吡啶钌电致化学发光体系因其灵敏度高、可以连续测试、装置简单等优点被广泛应用于分子生物学、化学、药学等领域.各种新材料的运用克服了原有方法稳定性差、重现性差等缺点,拓宽了固定化联吡啶钌电致化学发光的应用范围.介绍了近几年来一些用于固定联吡啶钌新的材料、固定方法及其相关的应用.  相似文献   

17.
In this study, a terbium complex, Tb(acac)3bath (acac: acetylacetone, bath: 4,7-diphenyl-1,10-phenanthroline), was synthesized and its luminescent properties were investigated compared with the reported terbium complex, Tb(acac)3phen (phen: phenanthroline). When it was used as an emitting material in organic electroluminescent (EL) device, the triple-layer-type device with a structure of glass substrate/ITO (indium-tin oxide)/TPD (N,N-diphenyl-N,N-bis(3-methylphenyl)-1,1-biphenyl-4,4-diamine)/Tb(acac)3bath/Alq3 (tris (8-hydroxyquinolinato) aluminum)/Al (aluminum) exhibited bright characteristic emission of terbium ion upon applying DC voltage. An apparent difference was observed between the photoluminescence spectrum and the EL spectrum. The EL device exhibited some characteristics of diode and the maximum luminance of 77 cd/m2 was obtained at 17 V.  相似文献   

18.
Nanoporous indium tin oxide (ITO) was synthesized via a sol-gel combustion hybrid method using Ketjenblack as a fuel. The effects of the sol-gel combustion conditions on the structures and morphology of the ITO particles were studied. The size of the nanoporous powder was found to be 20-30 nm in diameter. The layer of the nanoporous ITO electrode (-10 microm thickness) with large surface area (-360 m2/g) was fabricated for an electrochemical luminescence (ECL) cell. At 4 V bias, the ECL efficiency of the cell consisting of the nanoporous ITO layer was approximately 1050 cd/m2, which is significantly higher than the cell using only the FTO electrode (450 cd/m2). The nanoporous ITO layer was effective in increasing the ECL intensities.  相似文献   

19.
Du Y  Wei H  Kang J  Yan J  Yin XB  Yang X  Wang E 《Analytical chemistry》2005,77(24):7993-7997
We report microchip capillary electrophoresis (CE) coupling to a solid-state electrochemiluminescence (ECL) detector. The solid-state ECL detector was fabricated by immobilizing tris(2,2'-bipyridyl)ruthenium(II) (TBR) into an Eastman AQ55D-silica-carbon nanotube composite thin film on an indium tin oxide (ITO) electrode. After being made by a photolithographic method, the surface of the ITO electrode was coated with a thin composite film through a micromolding in capillary (MIMIC) technique using a poly(dimethylsiloxane) (PDMS) microchannel with the same pattern as an ITO electrode. Then the TBR was immobilized via ion exchange by immersing the ITO electrode containing the thin film in TBR aqueous solution. The whole system was built by reversibly sealing the TBR-modified ITO electrode plate with a PDMS layer containing electrophoresis microchannels. The results indicated that the present solid-state ECL detector displayed good durability and stability in the microchip CE-ECL system. Proline was selected to perform the microchip device with a limit of detection of 2 microM (S/N=3) and a linear range from 25 to 1000 microM. Compared with the CE-ECL of TBR in aqueous solution, while the CE microchip with solid-state ECL detector system gave the same sensitivity of analysis, a much lower TBR consumption and a high integration of the whole system were obtained. The present system was also used for medicine analysis.  相似文献   

20.
High density gold nanoparticles (GNPs) on indium tin oxide (ITO) film coated glass have been prepared by one-step electrochemical deposition from KAu(CN)2 in phosphate buffer (pH 8.0) solution. The resulting electrode surface was characterized by scanning electron microscopy (SEM), UV-vis spectroscopy, X-ray diffraction (XRD) and electrochemical method. Experimental results revealed that the number density of the nanoparticles was increased by the negative shift of the applied potential, while the coverage of the deposited GNPs on ITO substrate surface was also increased by means of the increasing deposition cycles. The presence of GNPs with high coverage improved the electrochemical response of Fe(CN)6 (3-/4-). This high coverage GNP/ITO substrate was applied to immobilization superoxide dismutase (SOD) for fabrication of electrochemical biosensors. The direct electron transfer between enzyme and electrode was realized, and the electrochemical performance of the SOD electrode was improved with the high coverage of GNPs. The biosensor exhibited a rapid and high response to superoxide anion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号